Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:47:02.282Z Has data issue: false hasContentIssue false

Spatially Resolved Characterization of Microstructure, Defects and Tilts in GaN Layers Grown on Si(111) Substrates by Maskless Cantilever Epitaxy

Published online by Cambridge University Press:  01 February 2011

Rozaliya Barabash
Affiliation:
[email protected], Oak Ridge National Laboratory, Materails Science and technology, One bethel Valley Road, Oak Ridge, TN, 37831-6118, United States
C. Roder
Affiliation:
[email protected], Institute of Solid State Physics, University of Bremen, Bremen, N/A, 28334, Germany
G. E. Ice
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Division, One Bethel Valley Road, Oak Ridge, TN, 37831-6118, United States
S. Einfeldt
Affiliation:
[email protected], Institute of Solid State Physics, University of Bremen, Bremen, N/A, 28334, Germany
J. D. Budai
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Division, One Bethel Valley Road, Oak Ridge, TN, 37831-6118, United States
W. Liu
Affiliation:
[email protected], Advanced Photon Source, Argonne, IL, 60439, United States
O. M. Barabash
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Division, One Bethel Valley Road, Oak Ridge, TN, 37831-6118, United States
S. Figge
Affiliation:
[email protected], Institute of Solid State Physics, University of Bremen, Bremen, N/A, 28334, Germany
D. Hommel
Affiliation:
[email protected], Institute of Solid State Physics, University of Bremen, Bremen, N/A, 28334, Germany
Get access

Abstract

The spatially resolved distribution of strain, misfit and threading dislocations, and crystallographic orientation in uncoalesced GaN layers grown on Si(111) substrates by maskless cantilever epitaxy was studied by white-beam Laue x-ray microdiffraction, scanning electron microscopy, and orientation imaging microscopy. Tilt boundaries formed at the column/wing interface with the misorientation strongly depending on the growth conditions. A depth-dependent deviatoric strain gradient is found in the GaN. Types and density of misfit dislocations as well as their arrangement within different dislocation arrays was quantified. The results are discussed with respect to the miscut of the Si(111) surface and misfit dislocations formed at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Phys.Stst.Sol. (a) 176, 15 (1999)Google Scholar
2. Hino, T., Tomiya, S., Miyajima, T., Hashimoto, S., and Ikeda, M., APL 76, 3421(2000)Google Scholar
3. Miyajima, T., Taleya, M., Goto, S., Tomiya, S., Takeda, S., Kurihara, H., Watanabe, K., Kato, M., Hara, N., Tsusaka, Y., and Matsui, J., Phys.Stst.Sol (b) 240, 285 (2003)Google Scholar
4. Gmeinwieser, N., Engl, K., Gottfriedsen, P., Swarz, U.T., Zweck, J., W.Wegschneider, Miller, S., Lugauer, H.-J., Leber, A., Weimar, A., Lell, A., and Harle, V., J. Appl. Physics 96, 3666 (2004)Google Scholar
5. Ashby, C. I. H., Willan, C. C., Han, J., Missert, N. A., Provencio, P. P., Follstaedt, D. M., Peake, G. M., and Griego, L., Appl. Phys. Lett. 77, 3233 (2000).Google Scholar
6. Schrittmacher, A., Rodt, S., Reibmann, L., Bimberg, D., Schroder, H., Obermeier, E., Riemann, T., Christen, J., and Krost, A., Appl. Phys. Lett. 78, 727 (2001)Google Scholar
7. Katona, T. M., Craven, M. D., Fini, P. T., Speck, J. S., and DenBaars, S. P., Appl. Phys. Lett. 79, 2907 (2001).Google Scholar
8. Katona, T. M., Speck, J. S., and DenBaars, S. P., Appl. Phys. Lett. 81, 3558 (2002).Google Scholar
9. Roder, C., Heinke, H., Hommel, D., Katona, T. M., Speck, J. S., and DenBaars, S. P., J. Phys. D: Appl. Phys. 36, A188 (2003).Google Scholar
10. Barabash, R.I., Roder, C., Ice, G.E., Einfeldt, S., Budai, J.D., Barabash, O.M., Figge, S., Hommel, D. J. Appl Phys (in press)Google Scholar
11. Barabash, R., Ice, G., Larson, B., Pharr, G., Chung, K., and Yang, W., Appl. Phys. Lett. 79, 749 (2001)Google Scholar
12. Barabash, R., Ice, G., Microdiffraction Analysis of Hierarchical Dislocation Organization. In: Encyclopedia of Materials: Science and Technology Updates (Elsevier, Oxford, 2005) p. 118.Google Scholar
13. Larson, B.C., Yang, W., Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature 415 (2002) 887.Google Scholar
14. Roder, C., Einfeldt, S., Figge, S., and Hommel, D., Phys. Rev. B 72, 085218 (2005).Google Scholar
15. Reeber, R. R. and Wang, K., Materials Chemistry and Physics 46, 259 (1996).Google Scholar
16. Wright, A. F., J. Appl. Phys. 82, 2833 (1997).Google Scholar
17. McSkimin, H. J., J. Appl. Phys. 24, 988 (1953).Google Scholar
18. Liliental-Weber, Z. and Cherns, D., J. Appl. Phys. 89, 7833 (2001).Google Scholar
19. Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett. 73, 481 (1998).Google Scholar
20. Einfeldt, S., Hommel, D., and Davis, R. F., In: Vacuum Science and Technology: Nitrides as seen by the technology, Eds. Paskova, T., Monemar, B., (Research Signpost, Trivandrum, 2002) p. 147166.Google Scholar
21. Budai, J. D., Yang, W., Tamura, N., Chung, J. S., Tischler, J. Z., Larson, B. C., Ice, G. E., Park, C., and Norton, D. P., Nature Materials 2, 487 (2003).Google Scholar
22. Nagai, H., J. Appl. Phys. 45, 3789 (1974).Google Scholar
23. Dodson, B. W. and Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987); 52, 852 (1988).Google Scholar
24. Huang, X. R., Bai, J., Dudley, M., Wagner, B., Davis, R. F., and Zhu, Y., Phys. Rev. Lett. 95, 086101 (2005).Google Scholar
25. Romanov, A. E., Fini, P., and Speck, J. S., J. Appl. Phys. 93, 106 (2003)Google Scholar