Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:30:53.489Z Has data issue: false hasContentIssue false

Spatially controlled CdSe nanocrystal distribution in phase separated polymer blend films

Published online by Cambridge University Press:  17 March 2011

Harumi Asami
Affiliation:
Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Soichiro Saita
Affiliation:
Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Itaru Kamiya
Affiliation:
Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Kenichi Yoshie
Affiliation:
Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Get access

Abstract

We report the fabrication and characterization of the self-assembled structure of tri-n-octylphosphine oxide (TOPO)-capped CdSe nanocrystals in binary polymer phase separated films of polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(2-vinylpyridine) (P2VP). These structures are formed via demixing of CdSe nanocrystals and binary polymer during spin coating. The nanocrystals preferentially segregate to the PS-rich phase in phase separated PS/PMMA and to the P2VP-rich phase in phase separated PS/P2VP, as shown by optical microscopy and photoluminescence images. For CdSe/PS/PMMA, we attribute the driving force for CdSe segregating to the PS-rich domain to the stronger attractive interaction of TOPO on PS with respect to PMMA due to polarity, and in the case of CdSe/PS/P2VP, segregating to the P2VP-rich domain to the interaction such as coordinate bonds being formed between pyridine groups and surface Cd atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brus, L. E., Appl. Phys. A, 53, 465 (1991).Google Scholar
2. Bawendi, M. G., Steigerwald, M.L., and Brus, L.E., Annu. Rev. Phys. Chem., 41, 477 (1990).Google Scholar
3. Weller, H., Angew. Chem. Int. Ed. Engl., 32, 41 (1993).Google Scholar
4. Alivisatos, A. P., Science, 271, 933 (1996).Google Scholar
5. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc., 15, 8706 (1993).Google Scholar
6. Katari, J. E. B., Colvin, V. L., and Alivisatos, A. P., J. Phys. Chem., 98, 4109 (1994).Google Scholar
7. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature, 370, 354 (1994).Google Scholar
8. Schlamp, M. C., Peng, X., and Alivisatos, A. P., J. Appl. Phys., 82, 5837 (1997).Google Scholar
9. Mattoussi, H., Radzilowski, L., Dabbousi, B. O., Thomas, E. L., Bawendi, M. G., and Rubner, M.F., J. Appl. Phys., 83, 7965 (1998).Google Scholar
10. Mattoussi, H., Rodrigues-Viejo, J., Jensen, K. F., Bawendi, M. G., and Rubner, M. F., SPIE Proc, 3476, 310 (1998).Google Scholar
11. Zehner, R. W., Lopes, W. A., Morkved, T. L., Jaeger, H. M., and Sita, L. R., Langmuir, 14, 241 (1998).Google Scholar
12. Lin, B., Morkved, T. L., Meron, M., Huang, Z., Viccaro, P. J., Jaeger, H. M., Williams, S. M., and Schlossman, M. L., J. Appl. Phys, 85, 3180 (1999).Google Scholar
13. Morkved, T. L., Wiltzius, P., Jaeger, H. M., Grier, D. G., and Witten, T. A., Appl. Phys. Lett., 64, 422 (1994).Google Scholar
14. Fink, Y., Ripin, D. J., Fan, S., Chen, C., Joannopoulos, J. D., and Thomas, E. L., J. Lightwave Technol., 17, 2039 (1999).Google Scholar
15. Fink, Y., Urbas, A. M., Bawendi, M. G., Joannopoulos, J. D., and Thomas, E. L., J. Lightwave Technol., 17, 1963 (1999).Google Scholar
16. Mattoussi, H., Radzilowski, L. H., Dabbousi, B. O., Fogg, D. E., Schrock, R. R., Thomas, E. L., Rubner, M. F., and Bawendi, M. G., J. Appl. Phys., 86, 4390 (1999).Google Scholar
17. Lee, J.-K., Kuno, M. K., and Bawendi, M. G., J. Photoscience, 5, 175 (1998).Google Scholar
18. Walheim, S., Boltau, M., and Steiner, U., Polymer Surfaces and Interfaces III, 75 (1999), and references therein.Google Scholar
19. Dalnoki-Veress, K., Forrest, J. A., Stevens, J. R., and Dutcher, J. R., Physica A, 239, 87 (1997).Google Scholar
20. Hao, E., Wang, L., Zhang, J., Yang, B., Zhang, X., and Shen, J., Chemistry Lett., 5 (1999).Google Scholar
21. Tanaka, H., Lovinger, A. J., and Davis, D. D., Phys. Rev. Lett., 72, 2581 (1994).Google Scholar
22. Ginzburg, V. V., Qiu, F., Paniconi, M., Peng, G., Jasnow, D., and Balazs, A. C., Phys. Rev. Lett., 82, 4026 (1999).Google Scholar
23. Karim, A., Douglas, J. F., Nisato, G., Liu, D.-W., and Amis, E. J., Macromolecules, 32, 5917 (1999).Google Scholar
24. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals : Molding the Flow of Light, Princeton University Press, Princeton, 1995.Google Scholar
25. Joannopoulos, J. D., Villeneuve, P. R., and Fan, S., Nature, 386, 143 (1997).Google Scholar
26. Soukoulis, C. M., in Photonic Band Gaps and Localization (NATO ASI Series B : Physics Vol. 308).Google Scholar