Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:45:10.974Z Has data issue: false hasContentIssue false

Spatial separation mechanism in Si quantum dots deposited by chemical vapour deposition on SiO2

Published online by Cambridge University Press:  01 February 2011

Rosaria A. Puglisi
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Giuseppe Nicotra
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Salvatore Lombardo
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Corrado Spinella
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Cosimo Gerardi
Affiliation:
STMicroelectronics, Str.le Primosole 50 95121 Catania, Italy
Get access

Abstract

A systematic study on the Si inter-dot distance after nucleation on silicon oxide substrates is presented. The process has been followed from the very early stages of the dot formation up to 25% of coverages. Structural characterization has been performed by means of energy filtered transmission electron microscopy, which allowed us to observe dot sizes down to 0.5 nm in radius. Silicon nanodots are shown to be surrounded by a depleted zone, where no new Si dots are observed to nucleate. The average size of such a zone ranges between 4 and 9 nm, depending on the deposition conditions. The dot radius is shown to be proportional to the depleted region size, thus indicating the scaling behaviour of the process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiwari, S., Rana, F., Chan, K., Hanafi, H., Chan, W., Buchanan, D., Int. Electron. Dev. Meet. Proc. 521 (1995).Google Scholar
2. Yano, K., Ishii, T., Sano, T., Mine, T., Murai, F., Hashimoto, T., Kobayashi, T., Kure, T., Seki, K., Proc. IEEE 87, 633 (1999).Google Scholar
3. Guo, L., Leobandung, E., Chou, S.Y., Science 275, 649 (1997).Google Scholar
4. Gebel, T., Rebohle, L., Zhao, J., Borchert, D., Fröb, H., Borany, J.V., Skorupa, W., Mater. Res. Soc. Symp. Proc. 638, F18.1 (2001).Google Scholar
5. Gerardi, C., Ammendola, G., Melanotte, M., Lombardo, S., Crupi, I., Rimini, E., European SolidState Devices Research Conference Proc., 475 (2002).Google Scholar
6. DeSalvo, B., Gerardi, C., Lombardo, S., Baron, T., Perniola, L., Mariolle, D., Mur, P., Toffoli, A., Gely, M., Semeria, M.N., Deleonibus, S., Ammendola, G., Ancarani, V., Melanotte, M., Bez, R., Baldi, L., Corso, D., Crupi, I., Puglisi, R.A., Nicotra, G., Rimini, E., Mazen, F., Ghibaudo, G., Pananakakis, G., Monzio Compagnoni, C., Ielmini, D., Spinelli, A., Lacaita, A., Wan, Y.M., Vander Jeugd, K., to be published in Int. Electron. Dev. Meeting Proc. (2003).Google Scholar
7. De Blauwe, J., Ostraat, M., Green, M.L., Weber, G., Sorsch, T., Kerber, A., Klemens, F., Cirelli, R., Ferry, E., Grazul, J.L., Baumann, F., Kim, Y., Mansfield, W., Bude, J., Lee, J.T.C., Hillenius, S.J., Flagan, R.C., Atwater, H.A., Int. Electron. Dev. Meeting Proc. (2000).Google Scholar
8. Baron, T., Martin, F., Mur, P., Wyon, C., Dupuy, M., J. Cryst. Growth 209, 1004 (2000).Google Scholar
9. Madhukar, S., Smith, K., Muralidhar, R., O'Meara, D., Sadd, M., Nguyen, B.-Y., White, B., Jones, B., Mater. Res. Soc. Symp. Proc. 638, F5.2.1 (2001).Google Scholar
10. Nicotra, G., Puglisi, R.A., Lombardo, S., Spinella, C., Vulpio, M., Ammendola, G., Bileci, M., Gerardi, C., accepted by Journal of Applied Physics.Google Scholar
11. Spinella, C., Lombardo, S., Priolo, F., J. Appl. Phys. 84, 5383 (1998).Google Scholar
12. Compagnoni, C.M., Ielmini, D., Spinelli, A.S., Lacaita, A.L., Previtali, C., Reliability Physics Symp. Proc. (2003).Google Scholar
13. Puglisi, R.A., Nicotra, G., Lombardo, S., Spinella, C., Ammendola, G., Bileci, M., Gerardi, C., accepted by Surface Science.Google Scholar
14. Zinke-Allmang, M., Thin Solid Films 346, 1 (1999).Google Scholar
15. Lowes, T.D., Journal of Applied Physics 73(10), 4937 (1993).Google Scholar
16. Carlow, G.R., Barel, R.J., Zinke-Allmang, M., Physical Review B 56(19), 12519 (1997).Google Scholar
17. Brinkmann, M., Biscarini, F., Taliani, C., Aiello, I., Ghedini, M., Physical Review B 61(24), R16339 (2000).Google Scholar
18. Steimle, R.F., Rao, R., Hradsky, B., Straub, S., Muralidhar, R., Sadd, M., White, B., Swift, C., Yater, J., Altmeyer, S., Wang, X.D., Hooker, J., Merchant, T., Bagchi, S., Kawashima, T., Tanaka, S., Sakai, J. and Mashiro, S., invited talk at NEOP Workshop, October 6–9th, 2002, Dresden, Germany.Google Scholar
19. Mulheran, P.A., Blackman, J.A., Philosophical Magazine Letters 72(1), 55 (1995).Google Scholar
20. Mulheran, P.A., Blackman, J.A., Physical Review B 53(15), 10261 (1996).Google Scholar
21. Brinkmann, M., Graff, S., Biscarini, F., Physical Review B 66, 165430 (2002).Google Scholar