Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T14:26:44.019Z Has data issue: false hasContentIssue false

Spatial resonances of the Cherenkov emission in dispersive metamaterials

Published online by Cambridge University Press:  19 November 2013

Gennadiy Burlak
Affiliation:
Center for Research on Engineering and Applied Sciences, Autonomous State University of Morelos, Cuernavaca, Mor.Mexico
Erika Martinez-Sanchez
Affiliation:
Center for Research on Engineering and Applied Sciences, Autonomous State University of Morelos, Cuernavaca, Mor.Mexico
Get access

Abstract

We systematically study the Cherenkov optical emission by a nonrelativistic modulated source crossing 3D dispersive metamaterial. It is found that the interference of the field produced by the modulated source with the periodic plasmonic-polariton excitations leads to the specific interaction in the frequency range where the dispersive refractive index of a metamaterial is negative. Such resonance considerably modifies the spatial structure of the Cherenkov fieldand the reversed Cherenkov emission. In our study parameters of metamaterial and modulated source are fixed while the frequency spectrum of the plasmonic excitations is formed due to the fields interplay in the frequency domain.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Veselago, V. G., Sov. Phys. Usp., 10, 509 (1968). [Usp.Fiz. Nauk 92, 517(1967)].CrossRefGoogle Scholar
Shalaev, V. M.,Nature Photonics, 1, 41 (2007).CrossRefGoogle Scholar
Soukoulis, C. M., and Wegener, M., Nature Photonics, 5, 523 (2011).CrossRefGoogle Scholar
Hess, O., Pendry, J. B., Maier, S. A., Oulton, R. F., Hamm, J. M., Tsakmakidis, K. L., Nature Materials, 11, 573 (2012).CrossRefGoogle Scholar
Chen, Huanyang, Chan, C. T., Sheng, Ping, Nature Materials, 9, 387 (2010).CrossRefGoogle Scholar
Gordon, J. A., and Ziolkowski, R. W., Opt. Express, 16, 6692 (2008).Google Scholar
Milton, G. W., New Journal of Physics, 12, 033035 (2010).CrossRefGoogle Scholar
Podolskiy, V., Sarychev, A., Shalaev, V., Optics Express, 11, 735 (2003).CrossRefGoogle Scholar
Shalaev, V., WenshanCai, M., Chettiar, Uday K., Yuan, Hsiao-Kuan, Sarychev, A. K., Drachev, V. P., Kildishev, A. V., Opt. Lett., 30, 3356 (2005).CrossRefGoogle Scholar
Burlak, G., D-de-Anda, A., Santaolaya Salgado, R., Perez Ortega, J., OpticsCommun., 283, 3569 (2010).Google Scholar
Burlak, G., PIER, 132, 149 (2012).CrossRefGoogle Scholar
Burlak, G., Rabinovich, V., SIGMA, 8, 096(2012).Google Scholar
Burlak, G., D-de-Anda, A., JAMOP, Article ID 217020, 113 (2011).Google Scholar
Xiao, Shumin, Drachev, V. P., Kildishev, A. V., Ni, Xingjie, UdayChettiar, K., Yuan, Hsiao-Kuan, Shalaev, V. M., Nature, 466, 735 (2010).CrossRefGoogle Scholar
Deb, Subimal, Dutta Gupta, S., J. Phys., 75, 5 (2010).Google Scholar
Cherenkov, P. A.Dokl. Akad. Nauk, 2, 451 (1934).Google Scholar
Averkov, Yu. O., Yakovenko, V. M., Phys. Rev. B, 79, 193402 (2005).Google Scholar
Duan, Z., Wu, B. I., Xi, S., Chen, H. S., Chen, M., PIER, 90, 75 (2009).CrossRefGoogle Scholar
Xi, Sheng, Chen, Hongsheng, Jiang, Tao, Ran, Lixin, Huangfu, Jiangtao, Wu, Bae-Ian, Kong, Jin Au, Chen, Min, Phys. Rev. Lett., 103, 194801 (2009).CrossRefGoogle Scholar
Averkov, Yu. O., Kats, A. V., and Yakovenko, V. M., Phys. Rev. B, 72, 205110 (2005).CrossRefGoogle Scholar
Zhou, Jun, Duan, Zhaoyun, Zhang, Yaxin, Hu, Min, Liu, Weihao, Zhang, Ping, Liu, Shenggang, Nuclear Instruments and Methods in Physics Research Section A, 654, 475 (2011).Google Scholar
Duan, Z., Wang, Y. S., Mao, X. T., Wang, W. X., and Chen, M., PIER,121, 215(2011).CrossRefGoogle Scholar
Zhu, Lei, Meng, Fan-Yi, Zhang, Fang, Fu, Jiahui, Wu, Qun, Min Ding, Xu, and Li, Joshua Le-Wei,PIER, 137, 239 (2013).CrossRefGoogle Scholar
Duan, Zhaoyun, Guo, Chen, Chen, Min, Opt.Express, 19, 13825 (2011).CrossRefGoogle Scholar
Ginzburg, V. L.,Phys. Usp. 39, 973, (1996).CrossRefGoogle Scholar
Jackson, J. D., Classical electrodynamics, (John Willey and Sons, 1975).Google Scholar
Oughstun, K. E.,Electromagnetic and Optical Pulse Propagation 2: Temporal Pulse Dynamics in Dispersive, (Attenuative Media, Springer Series in Optical Sciences, Springer, 2009).CrossRefGoogle Scholar
Yeh, P.,Optical waves in Layered Media,(John Wiley and Sons, New York, 1988).Google Scholar
Taflove, A., Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, Boston, 2005).Google Scholar
Schneider, J., Understanding the Finite-Difference Time-Domain Method, < www.eecs.wsu.edu/∼schneidj/ufdtd>, (2010).,+(2010).>Google Scholar
Afanasiev, G.N., Vavilov-Cherenkov and Synchrotron Radiation, Fundamental Theories of Physics(Kluwer Academic Publishers, 2004).Google Scholar
Ziolkowski, R. W., Phys. Rev. E, 63, 046604 (2001).CrossRefGoogle Scholar
Burlak, G., Martinez-Sanchez, E., PIER, 139, 277 (2013).Google Scholar