Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:45:03.542Z Has data issue: false hasContentIssue false

Sound Propagation in Cdw and Sdw

Published online by Cambridge University Press:  25 February 2011

Attila Virosztek
Affiliation:
University of Virginia, Department of Physics, Charlottesville, VA 22901
Kazumi Maki
Affiliation:
University of Southern California, Department of Physics, Los Angeles, CA 90089–0484
Get access

Abstract

We present a microscopic theory of the sound propagation in quasi one dimensional charge density wave (CDW), spin density wave (SDW) and field induced spin density wave (FISDW). First, we consider the ideal situation that the phase correlation length in the CDW or the SDW is infinite. In this limit due to the diffusion pole at iω = Dq2 in a variety of correlation functions the sound propagation depends on a) what is the ratio ω/Dq2 and b) if the CDW (or the SDW) is pinned or unpinned where D is the diffusion constant. Second, when the CDW (or the SDW) is unpinned, the phason starts to participate in the screening of the ionic potential. However, since the unpinned part is strongly inhomogeneous, the contribution of the phason term depends on the wave vector of q of the sound wave like (1 + (Lq)2)−1 where L is the Fukuyama-Lee-Rice coherence length. The present theory accounts for a variety of features observed in sound propagation in quasi-one dimensional CDW systems like NbSe3 and TaS3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for reviews on CDW: Monceau, P., Electric Properties of Inorganic One Dimensional Materials II, edited by Monceau, P. (Reidel, Dordrecht 1985), p.139;Google Scholar
Grüner, G. and Zettl, A., Phys. Report 119 117 (1985)Google Scholar
2. Brill, J. W. and Roark, W., Phys. Rev. Lett. 53 846 (1984);Google Scholar
Brill, J. W. and Roark, W., and Minton, G., Phys. Rev. B 33 6831 (1986)Google Scholar
3. Mozurkewich, G., Chaikin, P. M., Clark, W. G., and Grüner, G., Sol. State Commun, 56 421 (1985)Google Scholar
4. Chaikin, P. M., Tiedje, T. and Bloch, A. N., Sol. State Commun 41 739 (1982)Google Scholar
5. Xiang, X. D. and Brill, J. W., Phys. Rev. B 36 2969 (1987);Google Scholar
Xiang, X. D. and Brill, J. W., Phys. Rev. B 39 1290 (1989)Google Scholar
6. Xiang, X. D. and Brill, J. W., Phys. Rev. Lett 63 1853 (1989)Google Scholar
7. Jericho, M. H. and Simpson, A. M., Phys. Rev. B 34 1116 (1986)Google Scholar
8. Maki, K. and Virosztek, A., Phys. Rev. B 36 2910 (1987)Google Scholar
9. Nakane, Y. and Takada, S., J. Phys. Soc. Jpn. 54 977 (1985)Google Scholar
10. Virosztek, A. and Maki, K., Phys. Rev. B 41 (in press)Google Scholar
11. Efetov, K. B. and Larkin, A. I., Zh, Eksp. Teor. Fiz. 72 2350 (1977); [Sov. Phys. -JETP 45 1236 (1977) ]Google Scholar
12. Fukuyama, H. and Lee, P. A., Phys. Rev. B 17 535 (1978)Google Scholar
13. Lee, P. A. and Rice, T. M., Phys. Rev. B 19 3970 (1979)Google Scholar
14. Maki, K. and Virosztek, A., Phys. Rev. B 39 9640 (1989)Google Scholar
15. Virosztek, A. and Maki, K., Phys. Rev. B 37 2028 (1988);Google Scholar
Maki, K. and Virosztek, A. Phys. Rev. B 41 (in press)Google Scholar