Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:32:06.971Z Has data issue: false hasContentIssue false

Sorption Processes of UO22+ Ions onto Zirconium and Thorium Phosphate Surfaces: Thermodynamical and Structural Aspects

Published online by Cambridge University Press:  03 September 2012

R. Drol
Affiliation:
Institut de Physique Nucléaire, Groupe dc Radiochimic, Bâl. 1(K), 91406 Orsay Cedex.
E. Simoni
Affiliation:
Institut de Physique Nucléaire, Groupe dc Radiochimic, Bâl. 1(K), 91406 Orsay Cedex.
R. Cavcllcc
Affiliation:
Institut de Physique Nucléaire, Groupe dc Radiochimic, Bâl. 1(K), 91406 Orsay Cedex.
V. Pradin
Affiliation:
Institut de Physique Nucléaire, Groupe dc Radiochimic, Bâl. 1(K), 91406 Orsay Cedex.
Ch. Dcnauwcr
Affiliation:
CEA, DCC/DRDD, service d'éludes cl de modélisation des procédés ValRho, BP 171, 30207 Bagnols/cc/e, au LURE, université Paris-Sud, 91405 Orsay Cedex.
J. J. Ehrhardl
Affiliation:
LCPE-CNRS-UIIP, 405 rue de Vandœuvre, 54600 Villcrs-lès-Nancy.
Get access

Abstract

Most of the studies on sorption processes take into account only a ihcrmodynamic approach, and only lew studies have paid attention to ihc structural aspect (i.e. structure of ihc postulated surface complex). Experiments were conducted to study UO22+ sorption onto zirconium and thorium phosphate surfaces. Moreover, in order to identify the nature of the sorption sites and the structure of the surface complex, various spectroscopie techniques such as EXAFS, XPS and laser induced fluorescence have been used. Two different types of sorption sites on the thorium phosphate but only one on the zirconium phosphate have been detected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prikryl, J. D., Pabalan, R. T., Turner, D. R., Leslie, B.W., Radiochimica Acta, 66 (1994) 291.Google Scholar
2. Jaffrezic-Renault, N., Poirier-Andrade, H., Trang, D. H., J. Chroma. 201 (1980) 187 10.1016/S0021-9673(00)83873-XGoogle Scholar
3. Yinjie, Song, Hui, Zhang, Qiaoling, Yang, Aimin, Zhao, J. radioanal. Nuclear Chem., Articles, Vol. 198, No. 2 (1995) 375.10.1007/BF02036553Google Scholar
4. Manceau, A., Charlet, L., Boisset, M. C., Didier, B., Spadini, L., Appl. Clay Sci., 7 (1992) 201 10.1016/0169-1317(92)90040-TGoogle Scholar
5. Bidoglio, G., Gibson, P. N., Haltier, E., Omenetto, N., Lipponen, M., Radiochimica Acta, 58/59 (1992) 191.10.1524/ract.1992.5859.1.191Google Scholar
6. Benard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louer, D., Quarton, M., Chem. Mater., Vol. 8, No. 1 (1996) 181.10.1021/cm950302dGoogle Scholar
7. Alamo, J., Roy, R., Com. Am. Ceramic Society, (1984) 80 10.1111/j.1151-2916.1984.tb19517.xGoogle Scholar
8. Hayes, K., Redden, G., Ela, W., Leckie, J., J. Colloid and Interface Science, Vol. 142, No 2, (1991) 448 10.1016/0021-9797(91)90075-JGoogle Scholar
9. Westall, J., Hohl, H., Advances in Colloid and Interface Science 12 (1980) 265 10.1016/0001-8686(80)80012-1Google Scholar
10. Herbelin, A. L., Westall, J., Report 96–01, Depart. Chem., Orgon State Univ. Corvallis, Or 97331. 1996 Google Scholar