Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:27:48.906Z Has data issue: false hasContentIssue false

Some Scattering Results on Organic-Inorganic Composites

Published online by Cambridge University Press:  01 February 2011

J. E. Mark*
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221–0172
Get access

Abstract

A number of investigations are described to illustrate the use of small-angle x-ray and neutron scattering to characterize the structures of organic-inorganic composites. The organic phase in these materials is typically a polymer such as poly (dimethylsiloxane), and the inorganic phase a ceramic such as silica or titania (obtained by in-situ hydrolysis and condensation of an organosilane or organotitanate in the usual sol-gel approach). Other inorganic phases of interest include porous materials such as zeolites or Vycor glass. A major goal in such investigations is to correlate the structures of the composites with the synthetic techniques used to prepare them, and with the mechanical properties they exhibit. Carrying out scattering measurements as a function of time can also be used to obtain kinetic results on the sol-gel reactions used to generate the dispersed phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wignall, G. D., in Physical Properties of Polymers Mark, J. E., Ed. (American Chemical Society, Washington, DC, 1993) p. 313.Google Scholar
2. Higgins, J. S. and Benoit, H., Neutron Scattering from Polymers (Clarendon Press, Oxford, 1994).Google Scholar
3. Wignall, G. D., in Physical Properties of Polymers Handbook Mark, J. E., Ed. (SpringerVerlag New York, Inc., New York, 1996) p. 299.Google Scholar
4. Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
5. Rodrigues, D. E., Brennan, A. B., Betrabet, C., Wang, B. and Wilkes, G. L., Chem. Mater., 4, 1437 (1992).Google Scholar
6. Black, E. P., Ulibarri, T. A., Beaucage, G., Schaefer, D. W., Assink, R. A., Bergstrom, D. F., Giwa-agbomeirele, P. A. and Burns, G. T., in Hybrid Organic-Inorganic Composites Mark, J. E., Lee, C. Y.-C., and Bianconi, P. A., Eds. (American Chemical Society, Washington, 1995), Vol., 585, p. 237.Google Scholar
7. Mark, J. E., Polym. Eng. Sci., 36, 2905 (1996).Google Scholar
8. Erman, B. and Mark, J. E., Structures and Properties of Rubberlike Networks (Oxford University Press, New York, 1997).Google Scholar
9. Klein, L. C., Francis, L. F., Guire, M. R. D. and Mark, J. E., Eds., Organic/Inorganic Hybrid Materials II, vol., 576 (Materials Research Society, Warrendale, PA, 1999).Google Scholar
10. McCarthy, D. W., Mark, J. E. and Schaefer, D. W., J. Polym. Sci., Polym. Phys. Ed., 36, 1167 (1998).Google Scholar
11. Breiner, J. M., Mark, J. E. and Beaucage, G., Mat. Res. Soc. Symp. Proc., 520, 275 (1998).Google Scholar
12. Ulibarri, T. A., Beaucage, G., Schaefer, D. W., Olivier, B. J. and Assink, R. A., in Submicron Multiphase Materials Baney, R. H., Gilliom, L. R., Hirano, S.-I., and Schmidt, H. K., Eds. (Materials Research Society, Pittsburgh, PA, 1992), vol., 274, p. 85.Google Scholar
13. Breiner, J. M., Mark, J. E. and Beaucage, G., J. Polym. Sci., Polym Phys Edn., 37, 1421 (1999).Google Scholar
14. Wen, J. and Mark, J. E., J. Mats. Sci., 29, 499 (1994).Google Scholar
15. Frisch, H. L., Maaref, S., Xue, Y., Beaucage, G., Pu, Z. and Mark, J. E., J. Polym. Sci., Polym. Chem. Ed., 34, 673 (1996).Google Scholar
16. Frisch, H. L. and Mark, J. E., Chem. Mater., 8, 1735 (1996).Google Scholar
17. Pu, Z., Mark, J. E., Beaucage, G., Maaref, S. and Frisch, H. L., J. Polym. Sci., Polym. Phys. Ed., 34, 2657 (1996).Google Scholar
18. Pu, Z., Mark, J. E. and Beaucage, G., Rubber Chem. Technol, 72, 138 (1999).Google Scholar
19. Maaref, S., Frisch, H. L., Rajan, G. S., Pu, Z., Mark, J. E. and Beaucage, G., J. Macromol. Sci., Pure Appl. Chem. A36, 1895 (1999).Google Scholar
20. Schaefer, D. W., Mark, J. E., McCarthy, D. W., Jian, L., Sun, C.-C. and Farago, B., in Polymer-Based Molecular Composites Schaefer, D. W., and Mark, J. E., Eds. (Materials Research Society, Pittsburgh, 1990), vol., 171, p. 57.Google Scholar
21. Schaefer, D. W., Jian, L., Sun, C.-C., McCarthy, D. W., Jiang, C.-Y., Ning, Y.-P., Mark, J. E. and Spooner, S., in Ultrastructure Processing of Advanced Materials Uhlmann, D. R., and Ulrich, D. R., Eds. (Wiley, New York, 1992), p. 361.Google Scholar
22. Landry, M. R., Coltrain, B. K., Landry, C. J. T. and O'Reilly, J. M., J. Polym. Sci., Polym. Phys. Ed. 33, 637 (1995).Google Scholar
23. McCarthy, D. W., Mark, J. E., Clarson, S. J. and Schaefer, D. W., J. Polym. Sci., Polym. Phys. Ed., 36, 1191 (1998).Google Scholar
24. Breiner, J. M. and Mark, J. E., Polymer, 39, 5483 (1998).Google Scholar