Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:34:38.791Z Has data issue: false hasContentIssue false

Some Fundamental Considerations During Rapid Solidification Processing

Published online by Cambridge University Press:  21 February 2011

V. Laxmanan*
Affiliation:
Research Engineer, Department of Metallurgy and Materials Science, Case Western Reserve University, Cleveland, Ohio 44116. Concurrently, Visiting Scientist, NASA Lewis Research Center, Mail Stop 49–3, Cleveland, Ohio 44135.
Get access

Abstract

Three estimates of the solidification rates required to obtain a fully homogeneous structure during rapid solidification processing (RSP) have been made. One is given by the “absolute stability” criterion and another obtained from a new analysis for dendritic solidification. The third estimate, also derived from the above analysis, requires that “hypercooled” conditions be maintained after nucleation. A mechanism for the formation of “featureless” segregation-free zones during melt spinning and atomization processes is suggested and expressions for the critical cooling rate and thermal gradient required to produce such structures have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahn, R. W., Ann. Rev. Mat. Sci., 12, 5163 (1982).10.1146/annurev.ms.12.080182.000411Google Scholar
2. Mehrabian, R., Int. Met. Rev., 27, 185208 (1982).10.1179/imr.1982.27.1.185Google Scholar
3. Grant, N. J., J. of Metals, , 20–27, Jan. (1983).10.1007/BF03338180Google Scholar
4. Tiller, W. A., Jackson, K. A., Rutter, J. W., Chalmers, B., Acta Met., 1, 428–37 (1953).10.1016/0001-6160(53)90126-6Google Scholar
5. Mullins, W. W., Sekerka, R. F., J. Appl. Phys., 35, 444–51 (1964).10.1063/1.1713333Google Scholar
6. Cahn, J. W., Coriell, S. R., Boettinger, W. J., Proc. Laser and Electron Beam Processing of Materials, Eds. White, C. W., Peercy, P. S., Academic Press, 89103 (1980).10.1016/B978-0-12-746850-1.50016-5Google Scholar
7. Langer, J. S., Rev. Mod. Phys., 52, 128, Jan. (1980).10.1103/RevModPhys.52.1Google Scholar
8. Trivedi, R., J. Crystal Growth, 49, 219–32 (1980).10.1016/0022-0248(80)90157-8Google Scholar
9. Flemings, M. C., “Mechanism of Solidification at Rapid Rates,” Int. Conf. on Metal Sciences - The Emerging Frontiers, Banaras Hindu University, Varanasi, India, Nov. (1977).Google Scholar
10. Flemings, M. C., Met. Treatises, 291–300, ASM (1981).Google Scholar
11. Perepezko, J. H., Shiohara, Y., Paik, J. S., Flemings, M. C., Proc. NBS Conf. on Rapid Solidification, Gaithersburg, Dec. (1982).Google Scholar
12. Baker, J. C., Cahn, J. W., Acta Met., 17, 575–78 (1969).10.1016/0001-6160(69)90116-3Google Scholar
13. Glicksman, M. E., Schaefer, R. J., J. Crystal Growth, 1, 297 (1967).10.1016/0022-0248(67)90037-1Google Scholar
14. Burden, M. H., Hunt, J. D., J. Crystal Growth, 22, 109116 (1974).10.1016/0022-0248(74)90127-4Google Scholar
15. Hillert, M., “Fundamentals of Aligned Growth,”Keynote lecture at Conf. In-Situ Composites III, Boston, Mass., Nov. 29-Dec. 1, 1978. Google Scholar
16. Laxmanan, V., “Dendritic Solidification - An Analysis of Current Theories and Models,” to be published.Google Scholar
17. Laxmanan, V., “Dendritic Solidification Under an Imposed Thermal Gradient,” to be published.Google Scholar
18. Laxmanan, V., “Constitutional Supercooling at the Dendrite Tip,” to be published.Google Scholar
19. Laxmanan, V., “Some Further Refinements to the Model for Dendritic Solidification,” to be published.Google Scholar
20. Laxmanan, V., “Dendritic Solidification - Relaxation of Maximum Velocity Hypothesis,” to be published.Google Scholar
21. Zener, C., Trans. AIME, 167, 550–95 (1946).Google Scholar
22. Laxmanan, V., “Dendritic Solidification at Large Growth Rates,” to be published.Google Scholar
23. Schaeffer, R. J. et al. , Proc. Mat. Res. Soc. Symp., 8, 7989, Nov. 1981.10.1557/PROC-8-79Google Scholar
24. Hayzelden, C., Rayment, J., B. Cantor, Acta. Met., 31, 379–86 (1983).10.1016/0001-6160(83)90215-8Google Scholar