Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:19:10.033Z Has data issue: false hasContentIssue false

Solvent Processible Composite Carbon Nanotube Cathode for Polymer LED Applications

Published online by Cambridge University Press:  01 February 2011

Gao Liu
Affiliation:
Environmental Energy Technology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, U.S.A.
Steve Johnson
Affiliation:
Environmental Energy Technology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, U.S.A.
John B. Kerr
Affiliation:
Environmental Energy Technology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, U.S.A.
Get access

Abstract

Composites of single wall carbon nanotubes (SWNT) and conductive polymers were studied as potential cathode materials for application in polymer light emitting devices. A new conductive poly(2,7–9,9 (di(oxy-2,5,8-trioxadecane))fluorene) (PFO) possessing surfactant properties was used to stabilize SWNTs in solutions. The rigid PFO backbones act as a template while the ethyleneoxide side chains appear to wrap around the SWNTs. Up to 0.02% (by weight) of SWNTs are stabilized in the solution phase. The current vs. voltage behavior of the SWNT/PFO composite film (2% SWNT in PFO by weight) shows that most of the current is carried by SWNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tang, C. W. and VanSlyke, S. A., Applied Physics Letters 51 (12), 913 (1987);Google Scholar
Burroughes, J. H., Bradley, D. D. C., Brown, A. R. et al., Nature 347, 539 (1990).Google Scholar
2 Braun, D. and Heeger, A. J., Applied Physics Letters 58 (18), 1982 (1991).Google Scholar
3 Hebner, T. R., Wu, C. C., Marcy, D. et al., Applied Physics Letters 72 (5), 519 (1998);Google Scholar
Pardo, D. A., Jabbour, G. E., and Peyghambarian, N., Advanced Materials 12 (17), 1249 (2000).Google Scholar
4 Fournet, P., O'Brien, D. F., Coleman, J. N. et al., Synthetic Metals 121 (1–3 Special Issue SI), 1683 (2001);Google Scholar
Woo, H. S., Czerw, R., Webster, S. et al., Applied Physics Letters 77 (9), 1393 (2000);Google Scholar
Dalton, A. B., Blau, W. J., Chambers, G. et al., Synthetic Metals 121 (1–3 Special Issue SI), 1217 (2001).Google Scholar
5 Mc Carthy, B., Coleman, J. N., Czerw, R. et al., Synthetic Metals 121 (1–3 Special Issue SI), 1225 (2001);Google Scholar
Fournet, P., Coleman, J. N., Lahr, B. et al., Journal of Applied Physics 90 (2), 969 (2001).Google Scholar
6 O'Connell, M. J., Boul, P., Ericson, L. M. et al., Chemical Physics Letters 342 (3–4), 265 (2001);Google Scholar
Xia, H. S., Wang, Q., and Qiu, G. H., Chemistry of Materials 15 (20), 3879 (2003);Google Scholar
Richard, C., Balavoine, F., Schultz, P. et al., Science 300 (5620), 775 (2003).Google Scholar
7 Liu, G., Johnson, S., Mao, S. S. et al., Advanced Materials (Submitted).Google Scholar
8 Stephan, O. and Vial, J. C., Synthetic Metals 106 (2), 115 (1999).Google Scholar
9 Nguyen, T. Q., Doan, V., and Schwartz, B. J., Journal of Chemical Physics 110 (8), 4068 (1999).Google Scholar