Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:11:06.983Z Has data issue: false hasContentIssue false

Solubility of Hydrogen in Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

J. Daey Ouwens
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
R. E. I. Schropp
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

We demonstrate that the exisiting ambiguity between the Nuclear Magnetic Resonance (NMR) and the infra-red (IR) interpretation of the density of clustered hydrogen can be removed by monitoring the effective charge of the silicon hydrogen vibrations in a-Si:H versus the hydrogen content. By monitoring the peak position of the low frequency component (2000 cm−1 mode) of the stretching doublet, we conclude that the 2000 cm−1 and the 2100 cm−1 modes can be uniquely attributed to the monohydride and multihydride bonding configurations, respectively.

We show that the parameters describing the IR spectrum depend on the hydrogen content only and do not depend on the deposition technique, deposition conditions or post-deposition annealing treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Branz, H.M. and Silver, M., Phys. Rev. B 42, 7420 (1990)Google Scholar
2. Wagner, H. and Beyer, W., Solid State Comm., 48 585 (1983).Google Scholar
3. Maley, N., Myers, A., Pinarbasi, M., Leet, D., Abelson, J.R. and Thornton, J.A., J. Vac. Sci. Technol. A 7, 1267 (1989)Google Scholar
4. Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Demond, F. J., Müller, G. and Kalbitzer, S., J. Non-Cryst. Solids 35&36, 255 (1980)Google Scholar
5. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A. and Maley, N., Phys. Rev. B 45, 13367 (1992)Google Scholar
6. Amato, G., Della, G., Fizzotti, F., Manfredotti, C., Marchiso, R. and Paccagnella, A., Phys. Rev. B 43, 6627 (1991)Google Scholar
7. Shanks, H., Fang, C.J., Ley, L., Cardona, M., Demond, F.J. and Kalbitzer, S., phys. stat. sol. (b) 100, 43 (1980);Google Scholar
Shanks, H., Jeffrey, F.R. and Lowry, M.E., J. Phys. (Paris) Colloq. 42, C4773 (1981)Google Scholar
8. Wieder, H., Cardona, M. and Guarnieri, C.R., phys. stat. sol. (b) 92, 99 (1979).Google Scholar
9. van Swaay, R.A.C.C.M., Bemtsen, A.J.M., van Sark, W.G.J.H.M., Herremans, H., Bezemer, J. and van der Weg, W.F., J. Appl. Phys. 76, 251 (1994)Google Scholar
10. Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B. 16, 3556 (1977)Google Scholar
11. Nakazawa, K., Ueda, S., Kumeda, M., Morimoto, A. and Shimizu, T., Jpn. J. of Appl. Phys. 21, L176 (1982)Google Scholar
12. Daey Ouwens, J., Schropp, R.E.I. and van der Weg, W.F., Appl. Phys. Lett. 65, 204 (1994);Google Scholar
Daey Ouwens, J., unpublishedGoogle Scholar
13. Chattopadhyay, S., Sharma, S.N., Banerjee, R., Bushari, D.M., Kshirsagar, S.T., Chen, Y. and Williamson, D.L., J. Appl. Phys. 76, 5208 (1994)Google Scholar
14. Mahan, A.H., Raboisson, P., Williamson, D.L. and Tsu, R., Solar Cells 21, 117 (1987)Google Scholar
15. Severens, R.J., Brussaard, G.J.H., van de Sanden, M.C.M. and Schramm, D.C., to be publishedGoogle Scholar
16. van den Boogaard, M.J., van der Steege, A.C., van Sark, W.G.J.H.M. and van der Weg, W.F., Mater. Res. Soc. Proc. 336, 299 (1994)Google Scholar
17. Chen, Y.F., Solid State Comm. 71, 1127 (1989)Google Scholar
18. Lucovsky, G., Solid State Commun. 29, 571 (1979)Google Scholar
19. Beyer, W. and Mell, H. in Disordered Materials, edited by Kastner, M.A., Thomas, G.A. and Ovshinksky, S.R. (Plenum, New York, 1987), p641–p657 Google Scholar