Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:24:37.849Z Has data issue: false hasContentIssue false

Solubility of Carbon in Nanocrystalline α-Iron

Published online by Cambridge University Press:  10 April 2013

Alexander Kirchner
Affiliation:
Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
Konrad Eymann
Affiliation:
Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
Peter Quadbeck
Affiliation:
Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Winterbergstrasse 28, 01277 Dresden, Germany
Alexander Strauß
Affiliation:
Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Winterbergstrasse 28, 01277 Dresden, Germany
Bernd Kieback
Affiliation:
Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Winterbergstrasse 28, 01277 Dresden, Germany
Get access

Abstract

By using a thermodynamic model of nanocrystalline alloys the grain size effect on the solubility of carbon in α-iron is calculated. More specifically the enrichment at grain boundaries is predicted to result in a solubility enhancement. An experimental setup is devised to measure carbon solubility in nanocrystalline iron powder in equilibrium with graphite. At 390 °C a solubility of 0.514 at% is determined for nanocrystalline iron with a grain size of 23 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kirchner, A. and Kieback, B., Scr. Mater. 64, 406 (2011).CrossRefGoogle Scholar
Grabke, H.J. and Wolf, I., Mater. Sci. Eng. 87, 23 (1987).CrossRefGoogle Scholar
Kirchner, A. and Kieback, B., J. Nanomater., 953828 (2012).Google Scholar
Fecht, H.J., Phys. Rev. Lett. 65, 610 (1990).CrossRefGoogle Scholar
Wagner, M., Phys. Rev. B. 45, 635 (1992).CrossRefGoogle Scholar
Kaufman, M. and Schlosser, H., J. Phys. Condens. Matter 7, 2259 (1995).CrossRefGoogle Scholar
Vinet, P., Smith, J.R., Ferrante, J. and Rose, J.H., Phys. Rev. B 35, 1945 (1987).CrossRefGoogle Scholar
Atrens, A., Wang, J.Q., Stiller, K. and Andren, H.O., Corros. Sci. 48, 79 (2006).CrossRefGoogle Scholar
Bahrin, I., Thermochemical Data of Pure Substances, 3 rd ed. (VCH Publishers, Weinheim, 1995).CrossRefGoogle Scholar
LeClaire, A.D., in Smithells Metals Reference Book, edited by Brandes, E.A. and Brook, G.B. (Butterworth-Heinemann, Oxford, 1999), p. 1319.Google Scholar
Malow, T.R. and Koch, C.C., Acta Mater. 45, 2177 (1997).CrossRefGoogle Scholar