Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:44:48.465Z Has data issue: false hasContentIssue false

Solid State NMR Studies of Lead(II) Thiourea Materials

Published online by Cambridge University Press:  26 February 2011

Cecil Dybowski
Affiliation:
[email protected] University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 United States
Alicia Glatfelter
Affiliation:
[email protected] University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 United States
Shi Bai
Affiliation:
[email protected] University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 United States
D. Martinez
Affiliation:
[email protected] University of California Lawrence Berkeley National Laboratory MS 70A-1150 Berkeley CA 94720 United States
S. Segarra
Affiliation:
[email protected] University of California Lawrence Berkeley National Laboratory MS 70A-1150 Berkeley CA 94720 United States
Dale L. Perry
Affiliation:
[email protected] University of California Lawrence Berkeley National Laboratory MS 70A-1150 Berkeley CA 94720 United States
Get access

Abstract

Solid-state 13C and 207Pb NMR have been used to characterize a series of lead(II) ion complexes containing thiourea – widely used in materials science – as the organic complexing molecule. NMR data for the complexes have been measured and discussed with respect to the reported structures for the complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dhumane, N. R., Hussaini, S. S., Nawarkhele, V. V., and Shirsat, M. D., Cryst. Res. Technol. 41, 897 (2006).Google Scholar
2. Linga, R. C., Narasimhulu, K. V., Gopal, N. O., Rao, J. L., and Reddy, B. C. V., J. Molec. Struct. 754, 1009 (2005)Google Scholar
3. Anderson, A. G., Calabrese, J. C., Tam, W., and Williams, I. D., Chem. Phys. Lett. 134, 392 (1987).Google Scholar
4. Sun, L., Liu, C., Liao, C., and Yan, C., J. Mater. Chem. 9, 1655 (1999).Google Scholar
5. Lu, O., Gao, F., and Zhao, D., Nanotechnology 13, 741 (2002).Google Scholar
6. Wharf, I., Gramstad, T., Makhija, R., and Onyszchuk, M., Can. J. Chem. 54, 3430 (1976).Google Scholar
7. Herbstein, F. H., Kapon, M., and resiner, G. M., Z. Kristallogr. 187, 25 (1989).Google Scholar
8. Neue, G., Dybowski, C., Smith, M. L., and Barich, D. H., Solid State NMR 3, 115 (1994).Google Scholar
9. Herzfeld, J. and Berger, A. E., J. Chem. Phys. 73, 6021 (1980).Google Scholar
10. Eichele, K. and Wasylishen, R., HBA1.2, Dalhousie University, Halifax, Nova Scotia, Canada, 1996.Google Scholar
11. Mason, J., Solid State NMR 2, 285 (1993)Google Scholar
12. Nardelli, M. and Fava, G., Acta Cryst. 12, 727 (1959).Google Scholar
13. Miyamae, H., Hihara, G., Hayashi, K., and Nagata, M., Nippon Kagaku Kaishi [J. Chem. Soc. Jpn.] 11, 1501 (1986). In Japanese.Google Scholar