Article contents
Solid Phase Recrystallization and Strain Relaxation in Ion-Implanted Strained Si on SiGe Heterostructures
Published online by Cambridge University Press: 01 February 2011
Abstract
The relaxation process of strained silicon films on silicon-rich relaxed SiGe alloys has been studied. Experimental structures were grown via Molecular Beam Epitaxy (MBE) growth techniques and contain a strained silicon capping layer approximately 50 nm thick. The relaxed SiGe alloy compositions range from 0 to 30 at.% germanium. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer ∼30 nm thick, which was confined within the strained silicon capping layer. Upon annealing at 500 °C, it was found that the solid phase epitaxial regrowth process of the amorphous silicon breaks down for high strain levels and regrowth related defects were observed in the regrown layer. In addition, high-resolution X-Ray diffraction results indicate a reduction in strain for the silicon capping layer. This study addresses the critical strain regime necessary for the breakdown of solid phase epitaxial recrystallization in silicon.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 4
- Cited by