Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-12T22:10:03.979Z Has data issue: false hasContentIssue false

Sol-Gel Strategies for Controlled Porosity Ceramic Materials: Thin Film and Bulk

Published online by Cambridge University Press:  15 February 2011

C. Jeffrey Brinker
Affiliation:
Sandia National Laboratories, Advanced Materials Lab, 1001 University Blvd., SE Albuquerque, NM 87106 The UNM/NSF Center for Micro-Engineered Ceramics, The University of New Mexico, Albuquerque, NM 87131
Rakesh Sehgal
Affiliation:
The UNM/NSF Center for Micro-Engineered Ceramics, The University of New Mexico, Albuquerque, NM 87131
Narayan K. Raman
Affiliation:
The UNM/NSF Center for Micro-Engineered Ceramics, The University of New Mexico, Albuquerque, NM 87131
Sai S. Prakash
Affiliation:
The UNM/NSF Center for Micro-Engineered Ceramics, The University of New Mexico, Albuquerque, NM 87131
Laurent Delatire
Affiliation:
The UNM/NSF Center for Micro-Engineered Ceramics, The University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

Using sol-gel processing techniques it is possible to vary the condensation pathway over wide ranges to form primary species ranging in structure from oligomers to polymers to particles. The porosity of the corresponding dry gels depends on the size and structure of the primary species, the organization of these structures, often by aggregation, to form a gel, and the collapse of the gel by drying. This paper reviews these ideas in the context of forming thin film or bulk specimens. Several strategies are introduced to control porosity on length scales of interest for catalysis and catalytic membrane reactors: 1) aggregation of fractals; 2) management of capillary pressure; 3) surface derivatization; 4) relative rates of condensation and evaporation; 5) the use of organic templates and 6) sintering. These strategies are contrasted with the more traditional particle packing approach to preparing controlled porosity materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
2. Dullien, F.A.L., Porous Media, Fluid Transport and Pore Structure, (Academic Press, New York, 1979).Google Scholar
3. Scherer, G.W., J. Non-Cryst. solids 109, 183 (1989).Google Scholar
4. Scherer, G.W., J. Non-Cryst. Solids 155, 1 (1993).Google Scholar
5. Scherer, G.W., in Better Ceramics Through Chemistry VI, eds. Cheetham, A., Brinker, C.J., Mecartney, M.L., Sanchez, C. (Materials Research Society 346, Pittsburgh, 1994) p. 209.Google Scholar
6. Scherer, G.W., J. Non-Cryst. Solids 109, 171 (1989).Google Scholar
7. Leenars, A.F.M., Kreizer, K., and Burggraaf, A.J., J. Mat. Sci. 10, 1077 (1984).Google Scholar
8. Sanchez, C., In, M., J. Non-Cryst. Solids 147/148, 1 (1992).Google Scholar
9. Kroll, S.G., J. Appl. Polym. Sci. 23, 847 (1979).Google Scholar
10. Garino, T.J., Ph.D. Dissertation, MIT, Cambridge, 1986.Google Scholar
11. Logan, D.L., Ashley, C.S., Brinker, C.J. in Better Ceramics Through Chemistry V, eds., M.J., Hampden-Smith, Klemperer, W.G., Brinker, C.J. (Materials Research Society 271, Pittsburgh, 1992) p. 541.Google Scholar
12. Brinker, C.J., Sehgal, R., Hietala, S.L., Deshpande, R., Smith, D.M., Loy, D., Ashley, C.S., J. Membrane Sci. 94, 85 (1994).Google Scholar
13. Brinker, C.J., Ward, T.L., Sehgal, R., Raman, N.K., Hietala, S.L., Smith, D.M., Hua, D.-W., and Headley, T.J., J. Membrane Sci. 77, 165 (1993).Google Scholar
14. Smith, D.M., Deshpande, R., Brinker, C.J., Better Ceramics Through Chemistry V, eds., M.J., Hampden-Smith, Klemperer, W.G., Brinker, C.J. (Materials Research Society 271, Pittsburgh, 1992) p. 567.Google Scholar
15. Prakash, S.S. and Brinker, C.J., J. Non-Cryst. Solids, submitted.Google Scholar
16. Deshpande, R., Hua, D.-W, Smith, D.M., and Brinker, C.J., J. Non-Cryst. Solids 144, 32 (1992).Google Scholar
17. Stein, D. and Smith, D.M., J. Non-Cryst. Solids, submitted.Google Scholar
18. Breck, D.W., Zeolite Molecular Sieves, (Kreiger, R.E., Malabar, FL, 1984).Google Scholar
19. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., Nature 359, 710 (1992).Google Scholar
20. Brinker, C.J., Raman, N.K., Delattre, L., Prakash, S.S., Proceedings of The Third International Conference on Inorganic Membranes (Worcester, MA, 1994) ed. Ma, Y., to be published.Google Scholar
21. Raman, N.K. and Brinker, C.J., J. Membrane Sci, submitted.Google Scholar
22. Raman, N.K., Ward, T.L., Brinker, C.J., Sehgal, R., Smith, D.M., Duan, Z., Hampden-Smith, M.J., Bailey, J.K., and Headley, T.J., Applied Catalysis A: General 69, 65 (1993).Google Scholar
23. Sehgal, R. and Brinker, C.J., unpublished results.Google Scholar