Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T21:55:07.056Z Has data issue: false hasContentIssue false

Sol-Gel Pzt Films for Optical Waveguides

Published online by Cambridge University Press:  25 February 2011

S.L. Swartz
Affiliation:
Battelle, 505 King Avenue, Columbus, OH 43201
S.D. Ramamurthi
Affiliation:
Battelle, 505 King Avenue, Columbus, OH 43201
J. R. Busch
Affiliation:
Battelle, 505 King Avenue, Columbus, OH 43201
V.E. Wood
Affiliation:
Battelle, 505 King Avenue, Columbus, OH 43201
Get access

Abstract

Sol-gel processing is a candidate ferroelectric thin-film deposition method for electronic and electro-optic applications. At Battelle, sol-gel PbTiO3 and Pb(Zr,Ti)O3 films have been prepared on sapphire and single-crystal SrTiO3 substrates. Films deposited and annealed on sapphire substrates are crystalline with the perovksite structure and minimal crystallographic orientation, whereas films deposited on isostructural and lattice-matched SrTiO3 substrates exhibit a high degree of orientation. Guided-mode refractive index measurements were made using a single-prism method and film indices were computed. Refractive index values measured for PbTiO3 films (n = 2.58) and PZT films (n = 2.50) were slightly lower than values expected on the basis of bulk measurements. In double-prism experiments, optical wavcguiding was achieved over distances up to 10 mm in oriented PZT films on [100] SrTiO3substrates. Optical loss of 19 dB/cm was measured on one of these film samples. Such films, given requisite improvement in optical quality, may be suitable for useful optical waveguide devices. An approach is presented for the integration of ferroelectric waveguides onto silicon and/or GaAs substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hunsperger, R.G., Integrated Optics: Theory and Technology, Springer Verlag, New York (1982).Google Scholar
[2] Swartz, S.L., IEEE Trans. on Electr. Insulation 25, 935 (1990).Google Scholar
[3] Sayer, M. and Sreenivas, K., Science 247, 1056 (1990).Google Scholar
[4] Francombe, M.H. and Krishnaswamy, S.V., J. Vac. Sci. Techn. A8, 1382 (1990).Google Scholar
[5] Betts, R.A. and Pitt, C.W., Electronics Lett. 21 960 (1985).Google Scholar
[6] Sakashita, Y., Ono, T., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 69, 8352 (1991).Google Scholar
[7] Kidoh, H., Ogawa, T., Morimoto, A., and Shimizu, T., Appl. Phys. Lett 58, 2910 (1991).Google Scholar
[8] Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
[9] Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).Google Scholar
[10] Scott, J.F., Kammerdiner, L, Parris, M., Traynor, S., Ottenbacher, V., Schwabkeh, A., and Oliver, W.F., J. Appl. Phys. 64, 787 (1988).Google Scholar
[11] Khlee, M. and Waser, R., this Proceedings.Google Scholar
[12] Swartz, S.L., Grant, C.S., and Melling, P.J., Mat. Res. Soc. Symp. Proc. 152, 227 (1989)Google Scholar
[13] Eichorst, D.J. and Payne, D.A., Mat. Res. Soc. Symp. Proc. 121, 773 (1988).Google Scholar
[14] Chen, C.J., Xu, Y., Xu, R., and Mackenzie, J.D., J. Appl. Phys. 69, 1763 (1991).Google Scholar
[15] Okuwada, K., Nakamura, S., Imai, M., and Kakuno, K., Jpn. J. Appl. Phys. 29, 1153 (1990).Google Scholar
[16] Swartz, S.L., Bright, S.J., Busch, J.R., and Shrout, T.R., Ceramic Trans. 14, 159 (1990).Google Scholar
[17] Myers, E.R. and Kingon, A.I., eds., Mat. Res. Soc. Symp. Proc. 200 (1990) 544 Google Scholar
[18] Ramamurthi, S.D., Swartz, S.L., Busch, J.R., and Wood, V.E., submitted to Ceramic Trans. (1991).Google Scholar
[19] Wood, V.E., Busch, J.R., Ramamurthi, S.D., and Swartz, S.L., submitted to J. Appl. Phys. (1991).Google Scholar
[20] Swartz, S.L., Melling, P.J., Bright, S.J., and Shrout, T.R., Ferroelectrics 108, 71 (1990).Google Scholar
[21] Onodera, H., Awai, I., and Ikenoue, J., Appl. Opt. 22, 1194 (1983).Google Scholar
[22] Wood, V.E., Cressman, P.J., Holman, R.L., and Long, G., Proc. 6 th IEEE Int. Symp. Appl. Ferroelectrics, 80 (1986).Google Scholar
[23] McKee, R.A., Walker, F.J., Conner, J.R., Specht, E.D., and Zelmon, D.E., Appl. Phys. Lett. 59, 782 (1991).Google Scholar
[24] Haertling, G.H. and Land, C.E., J. Am. Ceram. Soc. 54, 1011 (1971).Google Scholar
[25] Land, C.E., J. Am. Ceram. Soc. 72, 20592064 (1989).Google Scholar
[26] Wasa, K., Yamazaki, O., Adachi, H., Kawaguchi, T., and Setsumi, K., J. Lightwave Techn. LT–2, 710 (1984).Google Scholar
[27] Title, M.A., Walpita, L.M., Chen, W.X., Lee, S.H., and Chang, W.S.C., Appl. Opt. 25, 1508 (1986).Google Scholar
[28] Baude, P.F., Ye, C., Tamagawa, T., and Polla, D.L., this Proceedings.Google Scholar
[29] Gurevich, S.A., Portnoi, E.L., and Skopina, V.I., J. Opt. Commun. (Germany) 3, 133 (1982).Google Scholar