Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:37:00.352Z Has data issue: false hasContentIssue false

Sol-Gel Processing of Optical Fiber

Published online by Cambridge University Press:  25 February 2011

M. E. Elias
Affiliation:
Department of Chemistry, Libson University, F.C. L., R. Escola Politecnica, 1294 Lisbon Codex – Portugal
A. M. Elias
Affiliation:
Department of Chemistry, Libson University, F.C. L., R. Escola Politecnica, 1294 Lisbon Codex – Portugal
Get access

Abstract

A new method for optical fiber production is shown. Hydrolytic polycondensation of tetramethoxysilane using a low concentration of α-picoline, 1.56×10−3% in water, gives SiO2 gel which was dried at 22 °C to a transparent amorphous material.

The densification process shows an exponential time dependence with a final value of 2.253 g/cm3 after 30 days. The specific surface area of the porous gel varies from 500 to 600 m2/g but pores are eliminated by the sintering process. Before sintering the gel, it is treated under an oxidizing atmosphere above 700 °C. At 1200 °C the pores are eliminated and a solid glass rod obtained.

After the sintering process a fiber is obtained from the rod which shows a transmission loss as low as 5.5 dB/km at 840nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Puyane, R., Harmer, A. L. and Gonzales-Oliver, C. J. R., 8th Eur. Conf. Opt. Commun. 623 (1982).Google Scholar
2. Susa, K., Matsuyama, I., Satoh, S. and Sugamma, T., Elect. Letters, 18(12), 499 (1982).Google Scholar
3. Roy, R., J. Amer. Ceram. Soc., 5, 344 (1969).Google Scholar
4. Dislich, H., Angew Chem. Int. Ed., 10, 363 (1971).Google Scholar
5. Yoldas, B. E., J. Mat. Sci., 10, 1856 (1975).CrossRefGoogle Scholar
6. Mukherjee, S. P. and Zarzycki, J., J. Amer. Ceram. Soc., 62 (1–2), 1 (1979).Google Scholar
7. Woodhead, J. L., Silic. Ind., 37, 191 (1972).Google Scholar
8. Sakka, S. in Treatise on Materials Science and Technology, Vol. 22, Glass III, edited by Tomozawa, M. and Doremus, R. H. (Academic Press, New York, 1982), p. 129.Google Scholar
9. Sakka, S., Amer. Ceram. Soc. Bull., 64 (11), 1463 (1985).Google Scholar
10. Scherer, G. W., J. Non-Cryst. Solids, 34, 239 (1979).CrossRefGoogle Scholar
11. Ulrich, D. R., Amer. Ceram. Soc. Bull, 64 (11), 1444 (1985).Google Scholar
12. Matsuyama, I., Susa, K., Satoh, S. and Suganuma, T., Amer. Ceram. Soc. Bull. 63 (11), 1409 (1984).Google Scholar
13. Iler, R. K., Colloid Chemistry of Silica and Silicates (Cornell Univ. Press, Ithaca, N.Y. (1955)).Google Scholar
14. Oliveira, S. M. F. and Elias, A. M., Proceedings of the “II Simposio Iberico Fisica de la Materia Condensada,” (1986) p. 128.Google Scholar
15. Scherer, G. W. and Luong, J. C., J. Non-Cryst. Solids, 63 163 (1984).Google Scholar
16. Iler, R. K., The Chemistry of Silica (John Wiley & Sons, Inc., N.Y. (1979)) p. 474.Google Scholar
17. Brinker, C. J., Keefer, K. D., Schaefer, D. W. and Ashley, C. S., J. Non-Cryst. Solids, 4, 47 (1982).Google Scholar
18. Hair, M. L., J. Non-Cryst. Solids, 1, 299 (1975).CrossRefGoogle Scholar
19. Scherer, G. W., J. Amer. Ceram. Soc., 60 (5–6), 236 (1977).Google Scholar
20. Frenkel, J., J. Phys. VSSR, 9, 385 (1945).Google Scholar
21. Nogami, M. and Moriya, Y., J. Non-Cryst. Solids 37, 191 (1980).Google Scholar
22. Brinker, C. J., Scherer, G. W. and Roth, E. P., J. Non-Cryst. Solids, 72 345 (1985).Google Scholar
23. Nagel, S. R., MacChesney, J. B. and Walker, K. L. in Optical Fiber Communication, Vol. 1 (Academic Press, N.Y. (1985))., p. 1.Google Scholar