Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T23:50:30.197Z Has data issue: false hasContentIssue false

Sol-Gel Nir-Reflective Multilayer Coatings On Glass Through Uvpolymerizable Ceramic Nanoparticles

Published online by Cambridge University Press:  10 February 2011

M. Mennig
Affiliation:
Institute for New Materials, gem. GmbH, Im Stadtwald 43, D-66123 Saarbrücken, Germany
P. W. Oliveira
Affiliation:
Institute for New Materials, gem. GmbH, Im Stadtwald 43, D-66123 Saarbrücken, Germany
H. Schmidt
Affiliation:
Institute for New Materials, gem. GmbH, Im Stadtwald 43, D-66123 Saarbrücken, Germany
Get access

Abstract

A new preparation route for an dielectric NIR-reflexion filter on glass is described. Coating sols are synthesized from SiO2 and TiO2 nanoparticles with photopolymerizable surface ligands. A 5-layer stack consisting of 2 SiO2 and 3 TiO2 layers was deposited on float glass by angledependent dip-coating (ADDC) with a fixed angle of 4° to the vertical and subsequent UV-curing. Finally, the whole stack was densified at 450 °C without cracking or discolouring. UV-vis-NIR transmittance and reflectance spectra show a steep increase of reflectance at 750 nm. In the range between 800 nm and 1200 nm, the reflectance is > 80 %. The visible transmittance is about 72 % due to single reflexion peaks. The bandwidth of the NIR reflection filter prepared by ADDC is about 200 nm larger and its maximum reflectance is only 5 % smaller compared to vertical dip-coating. The interference layer stack shows excellent stability in Taber Abraser, rubber, saline and UV tests, indicating a high potential for practical application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Flory, F. R. ,,Thin films for optical Systems” Marcel Dekker inc., (1995), 41248,Google Scholar
[2] Meyer, G., FH Gelsenkirchen, private communicationGoogle Scholar
[3] Lee, ; Sang-in, US Patent: US5572071Google Scholar
[4] Gestalten mit Glas, p. 77, ed. Interpane Glas Industrie AGGoogle Scholar
[5] Finley, I. I, Proceedings of the 2 nd International Conference on Coatings on Glass, ICCG, September 1998, Saarbruecken, Germany, to be published in Journal of Thin Solid FilmsGoogle Scholar
[6] Köstlin, H., Frank, G., Hebbinghaus, G., auding, H., Denissen, K., J. of non-Crystaline solids 218 (1997) 347353 10.1016/S0022-3093(97)00169-5Google Scholar
[7] Dislich;, H. Hinz;, P. Kaufmann;, R. Patent US 03847583Google Scholar
[8] Dislich, H., Sol-Gel Technology, (1990) 5079 Google Scholar
[9] Hussmann, E. K., Key Engineering Materials Vol. 150, pp. 4966, 1998 10.4028/www.scientific.net/KEM.150.49Google Scholar
[10] Röhlen, P., Prinz Optics, private communicationGoogle Scholar
[11] Mennig, Oliveira, P.W., Frantzen, A., Schmidt, H., to be publishedGoogle Scholar
[12] Schröder, H., Physics of Thin Films, Academic Press, New York - London, vol. 5 (1969), 87141 Google Scholar
[13] Arfsten, N. J., Eberle, A., Otto, J., Reich, A., J. Sol-Gel Science and Technologies 8, 10991104 (1997)Google Scholar
[14] Mennig, M., Oliveira, P.W., Frantzen, A., Schmidt, H., Proc. 2nd Int. Conf. Coatings on Glass ICCG, Saarbrücken 1998, Thin Solid Films (accepted for publication)Google Scholar
[15] DIN 53151Google Scholar
[16] DIN 58196T4Google Scholar
[17] Macleod, H. A., Thin Fim optical filters 2nd. Ed., Adam, Hilger, London, 1986 10.1887/0750306882Google Scholar
[18] Flory, F. R. ,,Thin films for optical Systems” Marcel Dekker inc., (1995), 41248,Google Scholar
[19] Bach, H. and Krause, D. Thin Films on Glass, Springer (1997), 5193 Google Scholar