Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:14:40.731Z Has data issue: false hasContentIssue false

Sol-Gel Entrapment of Enzymes

Published online by Cambridge University Press:  01 February 2011

Laurie Bergogné
Affiliation:
Chimie de la Matière Condensée (UMR CNRS 7574) - Université Pierre et Marie Curie 75252 Paris, FRANCE
Souad Fennouh
Affiliation:
Chimie de la Matière Condensée (UMR CNRS 7574) - Université Pierre et Marie Curie 75252 Paris, FRANCE
Stéphanie Guyon
Affiliation:
Chimie de la Matière Condensée (UMR CNRS 7574) - Université Pierre et Marie Curie 75252 Paris, FRANCE
Cécile Roux
Affiliation:
Chimie de la Matière Condensée (UMR CNRS 7574) - Université Pierre et Marie Curie 75252 Paris, FRANCE
Jacques Livage
Affiliation:
Chimie de la Matière Condensée (UMR CNRS 7574) - Université Pierre et Marie Curie 75252 Paris, FRANCE
Get access

Abstract

Two enzymes, lipase and β-galactosidase, have been encapsulated within sol-gel matrices. Enzymatic activity of encapsulated lipase for hydrolysis and trans-esterification reactions is maintained. Encapsulation yields depend not only on the sol-gel porous texture but also on the water amount added for the sol-gel synthesis and the hydratation history of the enzyme. When the water amount is low, the highly active enzyme conformation generated by the phase separation is frozen during gelation. Escherichia Coli have been also encapsulated. The cellular organization appears to be well preserved. Their β-galactosidase activity seems to be better in wet gels but decreases dramatically upon drying.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avnir, D., Braun, S., Lev, O., Ottolenghi, M., Chem. Mater.,, 6, 1605 (1994).Google Scholar
Dave, C., Dunn, B., Valentine, J. S., Zink, J. I., Anal. Chem., 66, 1120A (1994)Google Scholar
2. Wang, J., Pamidi, P. V. A., Rogers, K. R., Anal. Chem.,, 70, 1171 (1998)Google Scholar
3. Carturan, G., Campostrini, R., Diré, S., J. Mol. Cat‥,, 57, L13 (1989) andGoogle Scholar
Barreau, J. Y., Da Costa, J. M., Desportes, I., Livage, J., Monjour, L., Nishida, F., Dunn, B., C. R. Acad. Sci. Technol.,, 317, 653 (1994)Google Scholar
4. Reetz, M. T., Zonta, A., Simpelkamp, J., Rufinska, A., tesche, B., J. Sol-Gel Technol.,, 7, 35 (1996) andGoogle Scholar
Reetz, M. T., Adv. Mater.,, 9, 943 (1997)Google Scholar
5. Wang, B., Li, B., Deng, Q., Dong, S., Anal. Chem.,, 70, 3170 (1998)Google Scholar
6. Bergogné, L., Fennouh, S., Livage, J., Roux, C., “Organic/Inorganic Hybrid Materials”, Mater. Res. Soc. Symp. Proc.,, 519, 171 (1998)Google Scholar
7. Klibanov, A. M., Samokhin, G. P., Martinek, K., Berezin, I. V., Biotechnol. Bioeng‥,, 19, 1351 (1977)Google Scholar
8. Halling, P. J., Macrae, A. R., Eur. Pat. Appl., 64, 855 (1982)Google Scholar