Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T11:25:48.398Z Has data issue: false hasContentIssue false

Sol-Gel Derived Pyroelectric Barium Strontium Titanate Thin films for Infrared Detector Applications

Published online by Cambridge University Press:  21 March 2011

Jian-Gong Cheng
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Jun Tang
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Shao-Ling Guo
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Jun-Hao Chu
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Get access

Abstract

Ba0.8Sr0.2TiO3 thin films that are suitable for infrared detector applications have been prepared with a sol-gel process using a highly diluted precursor solution. Columnar structure with grain size close to 200 nm was obtained with layer-by-layer homoepitaxy due to a very small thickness of individual layer. The measured pyroelecrtic coefficient is larger than 3.1×10划4 C/m2K at the temperatures ranging from 10 to 26 °C and reaches the maximum value of 4.1×10划4 C/m2K at 16.8 °C. The infrared detectivity of 4.6×107 cmHz1/2W划1 has been obtained at 19 °C and 10 Hz in the Ba0.8Sr0.2TiO3 films deposited on thick (500 μm) platinum coated silicon substrates. The better infrared response can be expected by the improvement in the thermal isolation of pyroelectric element and the electrode materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dietz, G. W., Schumacher, M., Waser, R., Streiffer, S. K., Basceri, C., Kingon, A. I., J.Appl.Phys., 82, 2359(1997).Google Scholar
2. Whatmore, R. W., Osbond, P. C. and Shorrocks, N. M., Ferroelectrics, 76, 351(1987).Google Scholar
3. Chu, C. M., Lin, P., Appl. Phys. Lett., 70, 249(1997).Google Scholar
4. Yoon, S., Lee, J., Safari, A., J. Appl. Phys., 76, 2999(1994).Google Scholar
5. Chern, C. S., Liang, S., Shi, Z., Yoon, S., Safari, A., Lu, P., Kear, B. H., Goodreau, B., Marks, T., Hou, S., Appl. Phys. Lett., 64, 3181(1994).Google Scholar
6. Tahan, D. M., Safari, A., Klein, L., J. Am. Ceram. Soc., 79, 1593(1996).Google Scholar
7. Baumert, B. A., Chang, L-H., Matsuda, A., Tracy, C., Cave, N., Gregory, R., and Fejes, P., J. Mater. Res., 13, 197(1998).Google Scholar
8. Schwartz, R. W., Clem, P. G., and Voigt, J. A.et al, J. Am. Ceram. Soc. 82, 2359(1999).Google Scholar
9. Byer, R. L. and Roundy, C. B., IEEE Trans. Sonics & Ultrsonics Su–19, 333(1972).10.1109/T-SU.1972.29679Google Scholar
10. Chynoweth, A. G., J. Appl. Phys. 27, 78(1956).Google Scholar
11. Cheng, Jian-Gong, Meng, Xiang-Jian, and Li, Biao, Appl. Phys. Lett. 75, 2132(1999).Google Scholar
12. Cheng, Jian-Gong, Meng, Xiang-Jian, and Tang, Jun, Appl. Phys. Lett. 75, 3402(1999).Google Scholar
13. Zhang, Lei, Zhong, Wei-Lie, Wang, Chun-Lei, Zhang, Pei-Lin, Wang, Yu-Guo, J. Phys. D: Appl. Phys. 32, 546(1999).Google Scholar