Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:26:36.419Z Has data issue: false hasContentIssue false

Sol-gel and PLD Preparation of Lanthanum Gallate-based Mixed Ionic-electronic Conducting Oxides

Published online by Cambridge University Press:  01 February 2011

Natalia V Golubko
Affiliation:
[email protected], L.Y.Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Galina M Kaleva
Affiliation:
[email protected], L.Y.Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Yuliana E Roginskaya
Affiliation:
[email protected], L.Y.Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Sergey P Kabanov
Affiliation:
[email protected], L.Y.Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Alexander A Avetisov
Affiliation:
[email protected], L.Y.Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Gunnar Suchaneck
Affiliation:
[email protected], TU Dresden, Solid State Electronics Lab, Dresden, Germany
Ekaterina D Politova
Affiliation:
[email protected], L.Y.Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Get access

Abstract

Ionic and mixed conducting oxides (La0.9Sr0.1)[(Ga1-xFex)0.8Mg0.2]O3-y (I) and (Sr1.8La0.2)(GaFe)O5.1 (II) with the perovskite and brownmillerite structures, respectively, have been prepared in forms of dense bulk ceramics and ceramic coatings by the sol-gel method. Thin films II have been grown by the pulsed laser deposition method on single crystal MgO (100) and Si (100), fused silica, and stainless steel substrates. The films grown under optimal process conditions were single-phase and homogeneous, with a high degree of preferential orientation. The structure and microstructure of the ceramic coatings have been studied by X-ray diffraction and scanning electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonanos, N., Knigh, K.S., and Ellis, B., Solid State Ionics 79, 161 (1995).Google Scholar
2. Ishihara, T., Matsuda, H., and Takita, Y., J. Am. Chem. Soc. 116, 3801 (1994).Google Scholar
3. Willmott, P.R., Prog. Surf. Sci. 76, 163 (2004).Google Scholar
4. Glavatskikh, T.Yu., Venskovskii, N.U., Kaleva, G.M. et al., Inorg. Mater. 37, 647 (2001).Google Scholar
5. Aleksandrovskii, V.V., Venskovskii, N.U., Kaleva, G.M. et al., Bull.Russian Acad Sci., Fiz. 65, 1150 (2001).Google Scholar
6. Glavatskikh, T.Yu., Venskovskii, N.U., Aleksandrovskii, V.V. et al., Inorg. Mater. 39, 759 (2003).Google Scholar
7. Politova, E.D., Stefanovich, S.Yu., Aleksandrovskii, V.V. et al., Phys. Status Solidi 2, 196 (2005).Google Scholar
8. Politova, E.D., Stefanovich, S.Yu., Avetisov, A.K. et al., J. Solid State Electrochem. 8, 655 (2004).Google Scholar
9. Huang, K., Feng, M., and Goodenough, J.B., J. Am. Ceram. Soc. 79, 1100 (1996).Google Scholar
10. Huang, K. and Goodenough, J.B., J. Solid State Chem. 136, 274 (1998).Google Scholar
11. Golubko, N.V., Kaleva, G.M., Roginskaya, Y.E., Politiova, E.D., Inorg. Mater., 43, 1235 (2007).Google Scholar
12. Kaleva, G.M., Golubko, N.V., Suvorkin, S.V. et al., Inorg. Mater. 42, 799 (2006).Google Scholar
13. Schwartz, M., White, J.H. and Sammels, A.F., US Patent 6 033 632, 2000.Google Scholar
14. Zaitsev, S.V., Kaleva, G.M., Furaleva, K.I. et al., Inorg. Mater. 42, 892 (2006).Google Scholar
15. Politova, E.D., Aleksandrovskii, V.V., Kaleva, G.M. et al., Solid State Ionics 177, 1779 (2006)Google Scholar