Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:27:28.402Z Has data issue: false hasContentIssue false

Solar Cells prepared with Spray-ILGAR Indium Sulfide buffer layers on Cu(In,Ga)Se2 Absorbers

Published online by Cambridge University Press:  01 February 2011

Nicholas A. Allsop
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Christian A. Kaufmann
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Axel Neisser
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Marin Rusu
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Andreas Hänsel
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Martha C. Lux-Steiner
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Christian H. Fischer
Affiliation:
Department of Solar Energy, Hahn-Meitner-Institute Berlin, GermanyD14109.
Get access

Abstract

Indium sulfide buffer layers deposited by the Spray-Ion Layer Gas Reaction (Spray-ILGAR) technique have recently been used with Cu(In,Ga)(S,Se)2 absorbers giving cells with an efficiency equal to the cadmium sulfide references. In this paper we show the first results from cells prepared with Cu(In,Ga)Se2 absorbers (sulfur free). These cells reach an efficiency of 13.1% which remains slightly below the efficiency of the cadmium sulfide reference. However, temperature dependant current-voltage measurements reveal that the activation energy of the dominant recombination mechanism remains unchanged from the cadmium sulfide buffered cells indicating that recombination remains within the space charge region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Naghavi, N., Spiering, S., Powalla, M., Cavana, B. and Lincot, D., Prog. Photovoltaics: Research and Appl. 11 437–43 (2003).Google Scholar
2 Strohm, A., Eisenmann, L., Gebhardt, R.K., Harding, A., Schlötzer, T., Abou-Ras, D. and Schock, H.W.. European Mater. Res. Soc. Proc. (2004).Google Scholar
3 Allsop, N.A., Schönmann, A., Muffler, H.J., Bär, M., Lux-Steiner, M.C. and Fischer, Ch.H. In press (Prog. Photovoltaics: Research and Appl).Google Scholar
4 Bär, M., Muffler, H.J., Fischer, Ch.H., S, Zweigart, Karg, F. and Lux-Steiner, MC. Prog. Photovoltaics: Research and Appl. 10 173184 (2002).Google Scholar
5 Bär, M, Bohne, W., Rohrich, J., Strub, E., Lindner, S., Lux-Steiner, MC., Fischer, Ch.H., Niesen, TP and Karg, F.. J. Appl. Phys 3857–60 96 (2004).Google Scholar
6 Scheer, R., Neisser, A., Sakurai, K., Fons, P. and Niki, S.. Appl. Phys. Lett. 82 2091 (2003).Google Scholar
7 Allsop, N. A., Schönmann, A., Belaidi, A., Muffler, H.J., Mertesacker, B., Lux-Steiner, M.C. and Fischer, Ch. H. in preparation.Google Scholar
8 Rau, U., Schock, H. W. Appl. Phys. A: Mater. Sci. and processing. 69 131147 (1999).Google Scholar
9 Shockley, W. and Read, W.. Phys. Rev. 87, 835 (1952).Google Scholar
10 Walter, T., Herberholz, R. and Schock, H.W., Solid State Phenom. 51/52, 309 (1996).Google Scholar
11 Rusu, M, Glatzel, T., Kaufmann, C. A., Neisser, A., Siebentritt, S., Sadewasser, S., Schedel-Niedrig, T. and Lux-Steiner, M. C., these proceedings.Google Scholar
12 Gabor, A. M., Tuttle, J. R., Bode, M. H., Franz, A., Tennant, A. L., Contreras, M.A., Noufi, R, Jensen, D. G. and Hermann, A. M.. Sol. Energy Mater. Sol. Cells. 41 247260 (1996).Google Scholar