No CrossRef data available.
Published online by Cambridge University Press: 21 March 2012
Asymmetry is intrinsic to natural systems and is widely used by living organisms for efficient adaptation, mimicry and movement. Polymer bilayers are the example of synthetic asymmetric systems, which are able to generate macroscopic motion and fold by forming different 3D objects such as tubes and capsules. Similar to bimetal films, the polymer bilayer consist of two substances with different swelling properties. One polymer is non-swellable and hydrophobic. Another polymer is water-swellable hydrogel. The folding, which might occur in response to temperature or pH, is caused by swelling of the hydrogel layer. The formed tubes and capsules can be manipulated using magnetic field. Reversible folding and unfolding of the polymer films is applied for reversible capture and release of cells in response to change of temperature and other signals. This novel biomimetic approach can be used for controlled encapsulation and release of microparticles, cells and drugs as well as fabrication of 3D scaffolds for tissue engineering.