Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:27:47.932Z Has data issue: false hasContentIssue false

Sodium and Lithium Intercalation Within The Layered Oxides Na(Li)xMo2O4

Published online by Cambridge University Press:  21 February 2011

J. M. Tarascon
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701
S. Colson
Affiliation:
Chemistry Department, Rutgers University, Piscataway, NJ 08854
Get access

Abstract

The structural, chemical and electrochemical behavior of the layered molybdate oxides Na(Li)xMo2O4 have been investigated. We found a reversible sodium intercalation process over the range of composition 0.5 < x < 1.9 for the NaxMo2O4 system with 5 single phase domains at x = 0.55, 0.9, 1-1.4, 1.6, and 1.9. We took advantage of the high mobility of sodium diffusion in this compound to exchange sodium for lithium at relatively low temperature (300°C) and to prepare crystallographically pure LixMo2O4. Electrochemical data for the Li system shows that this material, which reversibly intercalates up to 1.7 Li atoms at an average potential of 3.1 volts, is a new promising cathode material for secondary lithium batteries. The ease with which these new molybdate phases can be intercalated is not limited to the alkali metals, since we also were able to intercalate H2O molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mizushima, K., Jones, P. C., Wiseman, P. J., and Goodenough, J. B., Mater. Res. Bull., 15, 783 (1980).Google Scholar
2. Murphy, D. W., Christian, P. A., DiSalvo, F. J., and Carrides, J. N., Mater. Res. Bull., 126, 437 (1979).Google Scholar
3. Reau, J. M., Fouassier, C. and Hagenmuller, P., Bull. Soc. Chim. 11 (1970) 3827.Google Scholar
4. McCarley, R. E., Lii, K. H., Edwards, P. A. and Brough, L. F., J. Solid State Chem. 57 17 (1985).Google Scholar
5. Aleandri, L. E., Edwards, P. A. and McCarley, R. E., in: Am. Chem. Soc. Meeting, Chicago, September 8-13 (1985).Google Scholar
6. Torardi, C. C., International Crystallographic Meeting, Australia 1987.Google Scholar
7. Tarascon, J. M. and Hull, G. W., Solid State Ionics, 22, 85 (1986).Google Scholar
8. Tarascon, J. M., J. Electrochemical Society, 134, 1351 (1987).Google Scholar
9. Tarascon, J. M., Salvo, F. J. Di, Murphy, D. W., Hull, G. W., and Waszczak, J. V., J. Solid State Chem. 54, 204 (1984).Google Scholar
10. Whittingham, M. S., Science 192, 1126 (1976).Google Scholar
11. Tarascon, J. M., Hull, G. W., Marsh, P., and Haar, L. Ter., J. Solid State Chem. 66, 204 (1987).Google Scholar
12. Rouxel, J., Danot, M. et Bichon, J., Bull. Soc. Chim. Fr., p.3930 (1971).Google Scholar
13. Delmas, C., Fouassier, C. and Hagenmuller, P. Mat. Res. Bull., 11, 1483 (1976).Google Scholar