Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:36:33.021Z Has data issue: false hasContentIssue false

SnS Nanocrystals Sensitized ZnO Nanowire Arrays for Extremely Thin Absorber Vertical Junction Solar Cells

Published online by Cambridge University Press:  17 March 2015

Firoz Alam
Affiliation:
Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Ambuj Misra
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Dinesh K. Pandya
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Viresh Dutta
Affiliation:
Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Get access

Abstract

Surfactant-free SnS nanoparticles were synthesized using continuous spray pyrolysis (CoSP) technique and used as sensitizers on electro-deposited ZnO nanowire arrays for fabrication of extremely thin absorbing (ETA) layers. The high-surface-area nanowire layer on ITO substrate was directly over-coated by SnS nanoparticles. The morphology of the ZnO/SnS nanostructures showed the coverage of orthorhombic SnS nanocrystals on hexagonal ZnO prismatic nanowires. The crystalline phase of the ZnO/SnS nanostructures was studied using X-ray diffraction. Conducting AFM showed a nonlinear characteristics confirming the junction formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chang, J. A., Im, S. H., Lee, Y. H., Kim, H-j., Lim, C-S., Heo, J. H., and Seok, S. I., Nano Lett. 12, 1863 (2012).CrossRefGoogle Scholar
Calixto-Rodriguez, M., Martinez, H., Sanchez-Juarez, A., Campos-Alvarez, J., Tiburcio-Silver, A., and Calixto, M.E., Thin Solid Films 517, 2497 (2009).CrossRefGoogle Scholar
Hickey, S. G., Waurisch, C., Rellinghaus, B., and Eychmuller, A., J. Am. Chem. Soc. 130, 14978 (2008).CrossRefGoogle Scholar
Taretto, K., and Rau, U., Progress in Photovoltaics 12, 573 (2004).CrossRefGoogle Scholar
Johson, J. B., Jones, H., Latham, B. S., Parker, J. D., Engelken, R. D., and Barber, C., Semicond. Sci. Technol. 14, 501 (1999).CrossRefGoogle Scholar
Ortiz, A., Alonso, J. C., Garcia, M., and Toriz, J., Semicond. Sci. Technol. 11, 243 (1996).CrossRefGoogle Scholar
Engelken, R. D., McCloud, H. E., Lee, C., Slayton, M., and Ghoreishi, H., J. Electrochem. Soc. 134, 2696 (1987).CrossRefGoogle Scholar
Tanusevski, A., Semicond. Sci. Technol. 18, 501 (2003).CrossRefGoogle Scholar
Ghosh, B., Das, M., Banerjee, P., and Das, S., Appl. Surf. Sci. 254, 6436 (2008).CrossRefGoogle Scholar
Hirano, T., Shimizu, T., Yoshida, K., and Sugiyama, M., 37th IEEE Photovoltaic Specialists Conf. (PVSC). Seattle, WA, 001280 (2011).Google Scholar
Wang, T., Jiao, Z., Chen, T., Li, Y., Ren, W., Lin, S., Lu, G., Ye, J., and Bi, Y., Nanoscale, 5 7552 (2013).Google ScholarPubMed