Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:59:54.689Z Has data issue: false hasContentIssue false

Smart-Cut® Technology: an Industrial Application of Ion Implantation Induced Cavities

Published online by Cambridge University Press:  10 February 2011

B. Aspar
Affiliation:
LETI/CEA - Département Microtechnologies - CEA Grenoble 17 avenue des Martyrs - 38054 Grenoble Cédex, France
C. Lagahe
Affiliation:
LETI/CEA - Département Microtechnologies - CEA Grenoble 17 avenue des Martyrs - 38054 Grenoble Cédex, France
H. Moriceau
Affiliation:
LETI/CEA - Département Microtechnologies - CEA Grenoble 17 avenue des Martyrs - 38054 Grenoble Cédex, France
A. Soubie
Affiliation:
LETI/CEA - Département Microtechnologies - CEA Grenoble 17 avenue des Martyrs - 38054 Grenoble Cédex, France
M. Bruel
Affiliation:
LETI/CEA - Département Microtechnologies - CEA Grenoble 17 avenue des Martyrs - 38054 Grenoble Cédex, France
A.J. Auberton-Hervé
Affiliation:
SOITEC SA, 1 Place Firmin Gautier 38000 Grenoble, France
T. Barge
Affiliation:
SOITEC SA, 1 Place Firmin Gautier 38000 Grenoble, France
C. Maleville
Affiliation:
SOITEC SA, 1 Place Firmin Gautier 38000 Grenoble, France
Get access

Abstract

The Smart-Cut® process is based on proton implantation and wafer bonding. Proton implantation enables delamination of a thin layer from a thick substrate to be achieved whereas the wafer bonding technique enables different multilayer structures to be achieved by transferring the delaminated layer onto a second substrate. One of the best known applications of Smart Cut® is the Silicon On Insulator structure. The physical mechanisms involved in the delamination process are discussed based on the study of Proton-induced microcavity formation during implantation and growth during annealing. The experimental results on the time and temperature required to achieve delamination lead to different activation energies depending on the implantation conditions and resistivity of the substrate. All the experiments indicate that growth of microcavities is mainly controlled by hydrogen diffusion. The growth of these microcavities and the pressure inside them induce delamination when the catastrophic radius of the microcavities is reached.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S.J., Corbett, J.W., Stavola, M., Hydrogen in Crystalline Semiconductors, Ed. Queiser, Hans-Joachim, Springer Series in Materials Science 16 (1992).Google Scholar
2. Saint Jacques, R.G., Nucl. Instrum. Methods, 209/210 (1983) pp. 333340.Google Scholar
3. Bruel, M.: Electron. Lett. 31 (1995) No. 14, pp. 12011202 Google Scholar
4. Di Cioccio, L., Letiec, Y., Letertre, F., Jaussaud, C. and Bruel, M.: Electron. Lett. 32 (1996) No. 12, pp. 11441145 Google Scholar
5. Jalaguier, E., Aspar, B., Pocas, S., Michaud, J.F., Zussy, M., Papon, A.M. and Bruel, M., Electron. lett. 34, 4 (1998) pp. 408409 Google Scholar
6. Auberton-Hervé, A.J., Lamure, J.M., Barge, T., Bruel, M., Aspar, B. and Pelloie, J.L.: Semicond. Int. 11 (1995) pp. 97.Google Scholar
7. Maszara, W.P.: Proc. Fourth Int. Symp. on Silicon on Insulator Technology and Devices, ed. Schmidt, D. N., vol. 90–6, The Electrochem. Soc. Series, Pennington (1990) pp. 199.Google Scholar
8. Colinge, J.P.: Proc. Int. Electron. Device Meeting (1994) pp. 817.Google Scholar
9. Tong, Q.Y., Scholz, R. and Goesele, U., Lee, T.H., Huang, L.J., Chao, Y.L. and Tan, T.Y., Appl. Phys. Lett 72 (1), 1998, pp 4951 Google Scholar
10. Weldon, M.K., Marsico, V.E., Chabla, V.J., Agarwal, A., Eaglesham, D.J., Sapjeta, J., Brown, W.L., Jacobson, D.C., Caudano, Y., Christman, S.B. and Chaban, E.E, J. Vac. Sci. Technol., B 15 (4), Jul/Aug 1997.Google Scholar
11. Hara, T., Kakisaki, Y., Oshima, S., Kitamura, T., Eighth Symposium on Silicon On Insulator Technology and Devices, elec. Chem. Soc. V 97–23 (1997) pp. 3338.Google Scholar
12. Poumeyrol, T., Phd Thesis, INPG Grenoble (1996).Google Scholar
13. Takeda, S., Jpn. J. Appl. Phys. 30 L639 (1991).Google Scholar
14. de Mauduit, B., Laanab, L., Bergaud, C., Faye, M.M., Martinez, A. and Claverie, A., Nucl. Inst. and Methods in Phys. Res. B84 (1994) 190.Google Scholar
15. Romani, S. and Evans, J.H., Nuclear Instruments and Methods in Phys. Research B44, P. 313 (1990).Google Scholar
16. Aspar, B., Bruel, M., Moriceau, H., Maleville, C., Poumeyrol, T., Papon, A.M., Claverie, A., Benassayag, G., Auberton-Hervé, A.J., T. Barge Microelectronic Engineering 36 (1997) 233240.Google Scholar
17. Claverie, A., Bonafos, C., Alquier, D. and Martinez, A., Solid State Phenomena 47–48 (1996) 195 Google Scholar
18. Varma, C., Appl. Phys. Lett. vol. 71, 24, (1997) pp. 35193521.Google Scholar
19. Holbech, J.D., Bech Nielsen, B., Jones, R., Sitch, P. and Oberg, S., Phys. Rev. Let., vol 71, n'6, Aug. 1993.Google Scholar
20. Estreicher, S.K., Hydrogen-related defects in crystalline semiconductors: a theorist's perspective, Mat. Sci. & Eng., vol R14, n07-8, June 1995.Google Scholar
21. Maszara, W.P., Goetz, G., Caviglia, A. and McKitterick, J.B., J. Appli. Phys. 64 (10) 15 Nov, 1988.Google Scholar
22. Maleville, C., Aspar, B., Poumeyrol, T., Moriceau, H., Bruel, M., Auberton-Herve, A.J., Barge, T. and Metral, F.: Proc. 7th Int. Symp. on SOI Technology and Devices, eds. Hemment, P.L.F. et al. , vol. 96–3, The Electrochem. Soc. Series, Pennington (1996) p. 34.Google Scholar
23. Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956)Google Scholar
24. Tong, Q.Y., Lee, T.H., Huang, L-J., Chao, Y.L. and Goesele, U. Elec. letters 34, 4, (1998) pp.407408 Google Scholar
25. Hubert, K.P., Hezberg, G., Molecular spectra and molecular structural constants of diatomic molecules, Van Nostrans, New York (1979).Google Scholar
26. Pearton, S.J., Corbett, J.W., Borenstein, J.T., Physica B 170 (1991) pp 85.Google Scholar
27. Agarwal, A., Haynes, T.E., Veneziza, V.V., Holland, O.W., Eaglesham, D.J., Appl. Phys. Lett. 72, 9, (1998) pp. 10861088.Google Scholar
28. Aspar, B., Moriceau, H. and Auberton-Hervé, A.J. Proc. Seventh Int. Symp. on SOI Technology and Devices, eds. Hemment, P.L.F. et al. , vol. 96–3, The Electrochem. Soc. Series, Pennington (1996) p. 99.Google Scholar
29. Meateanu, D., Maleville, C., Cristoloveanu, S., Moriceau, H., Aspar, B., Raynaud, C., Faynot, O., Pelloie, J.L., Auberon-Hervé, A. J., to be published at Infos'97.Google Scholar
30. Aspar, B., Bruel, M., Zussy, M. and Cartier, A.M.: Electron. Lett. 32 (1996) No. 21, 1985. 207.Google Scholar