Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T12:53:26.430Z Has data issue: false hasContentIssue false

Small Angle X-Ray Scattering (Saxs) Study of Coarsening Kinetics in an Aluminum-Lithium Alloy*

Published online by Cambridge University Press:  25 February 2011

Stephen Spooner*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Coarsening kinetics was studied in a A190. 6 Li9. 4 alloy aged at 100°C, 128°C, 165°C, 178 ° C, and 209 °C. The time-dependent behavior of the average precipitate radius followed t1/3 behavior. The precipitate/ matrix interfacial energy obtained from analysis of the kinetic constant was 0.015 J/M2 and was largely independent of temperature. The scattering curves exhibit interparticle interference which prevents us from calculating a particle size distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the National Science Foundation Grant No. DMR-7724459 through Interagency Agreement No. 40-636-77 with the U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

References

1. Williams, D. B. and Edington, J. W., Met. Sci. J. 9, 529 (1975).10.1179/030634575790445143CrossRefGoogle Scholar
2. Kulwicki, J. H. and Sanders, T. H., “Precipitate Growth in Al-Li Alloys”, presented at 1982 TMS Fall Meeting, St. Louis (1982).Google Scholar
3. Berezina, A. L., Trofimova, L. N. and Chuistov, K. V., Phys. Met. Metall. 55 (3), 111 (1983).Google Scholar
4. Hendricks, R. W., J. Appl. Phys. 11, 15 (1978).Google Scholar
5. Guinier, A., Fournet, G., Walker, C. B., and Yudowitch, K. L., X-Ray Small-Angle Scattering, Wiley, New York, 1955.Google Scholar
6. Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).10.1016/0022-3697(61)90054-3Google Scholar
7. Wen, C. J., Weppner, W., Boukamp, B. A., and Huggins, R. A., Met. Trans. B 11, 131 (1980).10.1007/BF02657182Google Scholar
8. Bauman, S. F. and Williams, D. B., Scripta Met. 18, 611 (1984).10.1016/0036-9748(84)90351-XGoogle Scholar
9. Rikvold, P. A. and Gunton, J. D., Phys. Rev. Letters, 49, 286 (1982).10.1103/PhysRevLett.49.286Google Scholar
10. Furukawa, H., Phys. Rev. A 28, 1717 (1983).10.1103/PhysRevA.28.1717Google Scholar
11. Schmidt, P. W. and Brill, O. L., J. Appl. Phys. 39, 2274 (1968).Google Scholar
12. Bendedouch, D. and Chen, S.-H., J. Phys. Chem. 87, 1653 (1983).10.1021/j100233a001Google Scholar