Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:40:33.941Z Has data issue: false hasContentIssue false

A Small Angle Neuitron Scattering Investigation of Compacted Nanophase TiO2 and Pd

Published online by Cambridge University Press:  21 February 2011

J. E. Epperson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J. W. White
Affiliation:
Research School of Chemistry, Australian National University, Canberra, Australiaand Argonne Fellow, Argonne National Laboratory
J. A. Eastman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Y. X. Liao
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
A. Narayanasamy
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Nanocrystalline compacts of TiO2 and Pd were prepared by first condensing the Ti or Pd vapors in an inert gas atmosphere. The Ti was oxidized in situ to TiO2. Samples were prepared by scraping off and compacting the nanophase materials into thin disks. The small angle neutron scattering was measured in the as-prepared condition and after isothermal anneals of up to 23 hrs at 550°C for the TiO2 and up to 3.3 hrs at 300°C for the Pd. Scattering data were obtained in absolute cross sections. Integrated small angle scattering and maximum entropy methods were used in estimating the structural parameters. The results are interpreted in terms of a model which consists of nanometer sized grains of the materials separated by boundary regions which are, on average, much less dense than the respective bulk materials; 21% for the TiO2 and about 56% for Pd. However, the boundary regions contain voids or pores, which contribute to these density decrements. Possible sources of error are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1). Birringer, R., Herr, U. and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
2). Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, Yussouff, M., ed. (World Scientific Publ. Co., Singapore, 1987), p. 403.Google Scholar
3). Siegel, R. W. and Eastman, J. A., Mat. Res. Soc. Symp. Proc. Vol. 132, 3 (1989).Google Scholar
4). Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T. and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
5). Borkowski, C. J. and Kopp, M. K., Rev. Sci. Inst. 46, 951 (1975).Google Scholar
6). Epperson, J. E., Carpenter, J. M., Thiyagarajan, P. and Heuser, B., Nucl. Instr. Methods, in press (1990).Google Scholar
7). Bates, F. S. and Wignall, G. D., Macromolecules 19, 934 (1986).Google Scholar
8). Potton, J. A., private communication, January 1988.Google Scholar
9). Epperson, J. E., Siegel, R. W., White, J. W., Klippert, T. E., Narayanasamy, A., Eastman, J. A. and Trouw, F., Mat. Res. Soc. Symp. Proc. Vol. 113, 15 (1989).Google Scholar
10). Potton, J. A., Daniell, G. J. and Rainford, B. D., J. Appl. Cryst. 21, 663 (1988).Google Scholar
11). Jorra, E., Franz, H., Peisl, J., Wallner, G., Petry, W., Birringer, R., Gleiter, H. and Haubold, T., Phil. Mag. B60, 159 (1989).CrossRefGoogle Scholar
12). Porod, G., in Small Angle X-ray Scattering, eds. Glatter, O. and Kratky, O., Academic Press, London and New York, p. 17 (1982).Google Scholar
13). Guinier, A. and Fournet, G., Small Angle Scattering of X-rays, John Wiley and Sons, New York (1955).Google Scholar
14). Porod, G., Z. Kolloid 124, 83 (1951); Z. Kolloid 125, 51 and 108 (1952).Google Scholar
15). Hahn, H., Lucas, J. and Averback, R. S., submitted to J. Mater. Res. (1990).Google Scholar