Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:36:05.174Z Has data issue: false hasContentIssue false

Slow Aggregation of Titania Nanocrystals in Acidic Hydrosols

Published online by Cambridge University Press:  07 July 2011

Olga Pavlova-Verevkina
Affiliation:
Karpov Institute of Physical Chemistry, Obuha side street 3-1/12, building 6, 105064 Moscow, Russia
Ludmila Ozerina
Affiliation:
Karpov Institute of Physical Chemistry, Obuha side street 3-1/12, building 6, 105064 Moscow, Russia
Natalia Golubko
Affiliation:
Karpov Institute of Physical Chemistry, Obuha side street 3-1/12, building 6, 105064 Moscow, Russia
Abdelkrim Chemseddine
Affiliation:
Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
Get access

Abstract

The kinetics of slow aggregation of monodisperse TiO2 nanocrystals in the acidic hydrosols at room temperature was studied for months by turbidimetry. The dependence of the initial rate of aggregation on the pH was calculated. The comparison of results obtained by turbidimetry and small angle X-ray scattering permits to suppose that very loose aggregates form at the low pH in HCl solution. The dependencies obtained in this work for room temperature can be taken into consideration at the tuning of TiO2 nanoparticles morphology through thermal treatment of hydrosols.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, M.A., Gieselmann, M.J. and Xu, Q., J. Memb. Sci. 39, (3), 243 (1988).Google Scholar
2. Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V. and Gratzel, M., J. Am. Ceram. Soc. 80, 3157 (1997).Google Scholar
3. Pottier, A., Cassaignon, S., Chaneac, C., Villain, F., Tronc, E. and Jolivet, J.-P., J. Mater. Chem. A. 13, 877 (2003).Google Scholar
4. Alphonse, P., Varghese, A. and Tendero, C., J. Sol-Gel Sci. Tech. 56, 250 (2010).Google Scholar
5. Brinker, C.J and Scherer, G.W., Sol-Gel Science, (Academic press, New York, 1990) p. 239.Google Scholar
6. Pavlova-Verevkina, O.B., Ozerina, L.A., Nazarov, V.V. and Surin, N.M., Colloid Journal 69, 492 (2007).Google Scholar
7. Pavlova-Verevkina, O.B., Ozerina, L.A., Chvalun, S.N., Surin, N.M. and Ozerin, A.N., J. Sol-Gel Sci. Tech. 45, 219 (2008).Google Scholar
8. Pavlova-Verevkina, O.B., Ozerina, L.A., Politova, E.D., Surin, N.M. and Ozerin, A.N., Colloid Journal 71, 529 (2009).Google Scholar
9. Chemseddine, A. and Moritz, T., Eur. J. Inorg. Chem. 235 (1999).Google Scholar
10. Feigin, L.A. and Svergun, D.I., Structure Analysis by Small-Angle X-ray Scattering and Neutron Scattering, (Plenum Press, New York, 1987).Google Scholar