Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-05T19:16:06.193Z Has data issue: false hasContentIssue false

The Slip Transfer Process Through Grain Boundaries in HCP Ti

Published online by Cambridge University Press:  21 February 2011

J. Shirokoff
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory University, of Illinois 1304 W. Green St., Urbana IL 61801
I.M. Robertson
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory University, of Illinois 1304 W. Green St., Urbana IL 61801
H.K. Birnbaum
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory University, of Illinois 1304 W. Green St., Urbana IL 61801
Get access

Abstract

Information on the mechanisms of slip transfer across grain boundaries in an HCP α-Ti alloy has been obtained from deformation experiments performed In situ in the transmission electron microscope. Initially, lattice dislocations are accommodated within the grain boundary until a critical local dislocation density is reached. The boundary then responds by activating slip in the adjoining grain on the slip system experiencing the highest local resolved shear stress and producing the residual grain-boundary dislocation with the smallest Burgers vector. Slip on secondary slip systems may be initiated provided they reduce the magnitude of the Burgers vector of, or eliminate, the residual grainboundary dislocation. The selection rules used to predict the slip system activated by the grain boundary are the same as apply in ordered and disordered FCC materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Forwood, C. T. and Clarebrough, L. M., Phil. Mag. 44 31 (1981).CrossRefGoogle Scholar
2. Lim, L. C., Scripta Metall. 18 1139 (1984).CrossRefGoogle Scholar
3. Lim, L. C. and Raj, R., J. Phys., Colloq. C4 581595 (1985).Google Scholar
4. Strotk, K., Wendt, H., Carter, C. B. and Kohlstedt, D. L., Acta Metall. 36 893 (1988).Google Scholar
5. Bollmann, W., Michaut, B. and Sainfort, G., Phys. Stat. Sol. (a) 13 637 (1972).CrossRefGoogle Scholar
6. Bollmann, W., Crystal Defects and Crystalline Interfaces, (Springer, New York, 1970).CrossRefGoogle Scholar
7. Pond, R. C., Proc. Roy. Soc. Lond. A 357 471 (1977).Google Scholar
8. Pond, R. C. and Smith, D. A., Phil. Mag. 36 353 (1977).CrossRefGoogle Scholar
9. Dingley, D. J. and Pond, R. C., Acta Metall. 27 667 (1978).CrossRefGoogle Scholar
10. Lee, T. C., Robertson, I. M. and Birnbaum, H. K., Metall. Trans. 21A 3001 (1990).Google Scholar
11. Lee, T. C., Robertson, I. M. and Birnbaum, H. K., Phil. Mag. 62 131 (1990).CrossRefGoogle Scholar
12. Shen, Z. Y., Wagoner, R. H. and Clark, W. A. T., Scripta Metall. 20 921 (1986).CrossRefGoogle Scholar
13. Robertson, I. M., Bond, G. M., Lee, T. C., Shih, D. S. and Birnbaum, H. K. in Structure and Properties of Internal Interfaces, edited by Raj, R. and Sass, S. L. (Journal de Physique C5, Lake Placid, 1987) p..Google Scholar
14. Shen, Z., Wagoner, R. H. and Clark, W. A. T., Acta Metall. 36 3231 (1988).CrossRefGoogle Scholar
15. Robertson, I. M., Lee, T. C., Subramanian, R. and Birnbaum, H. K. in Structure and Properties of Interfaces, edited by W. Clark, A. T., Dahmen, U. and Briant, C. L. (Materials Research Society 238, Boston, (1991) p. 357.Google Scholar
16. Lee, T. C., Robertson, I. M. and Birnbaum, H. K., Acta Metall. 40 2569 (1992).CrossRefGoogle Scholar
17. Livingston, J. D. and Chalmers, B., Acta Metall. 5 322 (1957).CrossRefGoogle Scholar
18. Collings, E. W. The Physical Metallurgy of Titanium Alloys (ASM, Metals Park, Ohio 1984) p. 174.Google Scholar
19. Shirokoff, J., I. M. Robertson and Birnbaum, H. K., To be published (1994).Google Scholar
20. Kelly, A. and Groves, G. W., Crystallography and Crystal Defects, (Longman, London, 1970).Google Scholar
21. Clark, W. A. T., Wagoner, R. H., Shen, Z. Y., Lee, T. C., Robertson, I. M. and Birnbaum, H. K., Scripta Metall. 26 203 (1992).CrossRefGoogle Scholar