Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T03:42:25.657Z Has data issue: false hasContentIssue false

Slip trace characterisation of Ni3Al by atomic force microscopy.

Published online by Cambridge University Press:  21 March 2011

Christophe Coupeau
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, F-86962 Futuroscope Cedex, FRANCE.
Tomas Kruml
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), DP-IGA, CH-1015 Lausanne, SWITZERLAND.
Joël Bonneville
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, F-86962 Futuroscope Cedex, FRANCE.
Get access

Abstract

We examined by atomic force microscope the slip traces produced on Ni3Al single crystals pre-deformed up to nearly 1% plastic strain at three temperatures in the anomaly domain: 293K, 500K and 720K. It is observed that, whatever the deformation temperature, the slip traces essentially belong to the primary octahedral slip system. The lengths of the slip lines become shorter and shorter with increasing temperature, while the number of dislocations that constitutes the lines is approximately constant. These results are interpreted in terms of a decreasing mean free path of the mobile dislocations when the temperature is raised. The implications of these results in the understanding of the flow stress anomaly are underscored.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Veyssière, P. and Saada, G., Dislocations in solids, ed. Nabarro, F.N.R. and Duesbery, M.S. (Amsterdam:Elsevier Science, 1996) p. 253.Google Scholar
2. Nadgorny, E. M. and Iunin, Y. L., in: High Temperature Ordered Intermetallic Alloys VI 364, ed. Horton, J. A., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S. (Materials Research Society, Pittsburgh, 1995) p. 707.Google Scholar
3. Jiang, C. B., Patu, S., Lei, Q. Z. and Shi, C. X., Philos. Mag. Letters, 78, 1 (1998).Google Scholar
4. Miura, S., Ochia, S., Oya, Y., Mishima, Y. and Suzuki, T., in: High Temperature Ordered Intermetallic Alloys III 133, ed. Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C. (Materials Research Society, 1989) p. 341.Google Scholar
5. Thornton, P.H., Davies, R.G. and Johnston, J.L., Metall. Trans., 1, 207 (1970).Google Scholar
6. Ezz, S.S. and Hirsch, P.B., Phil. Mag. A, 69, 105 (1994).Google Scholar
7. Matterstock, B., Martin, J.-L., Bonneville, J., Kruml, T.. in: High Temperature Ordered Intermetallic Alloys VIII 552, ed. George, E. P., Mills, M. J. and Yamaguchi, M. (Materials Research Society, 1999) p. KK. 5.17. Google Scholar
8. Spätig, P., PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, 1995.Google Scholar
9. Bonneville, J. and Martin, J. L., in: Multiscale Phenomena in Plasticity Nato Science Series - Vol. 367 ed. Lepinoux, J., Mazière, D., Pontikis, V. and Saada, G. (Kluwer Academic Publishers, London, 2000) p. 57.Google Scholar
10. Coupeau, C., Bonneville, J., Matterstock, B., Grilhé, J. and Martin, J.-L., Scripta Mat., 41, 945 (1999).Google Scholar
11. Staton-Bevan, A.E. and Rawlings, R.D., Phys. Stat. Sol. A, 29, 613 (1975).Google Scholar
12. Bonneville, J., Baluc, N. and Martin, J.-L., Proc. 6th Int. Symp. (JIMIS-6) on Intermetallic Compounds, ed. Izumi, O. (The Japan Institut of Metals, 1991) p. 323.Google Scholar
13. Baluc, N., PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, 1989.Google Scholar
14. Lall, C., Chin, S. and Pope, D.P., Met. Trans. A, 10, 1323 (1979).Google Scholar
15. Couret, A., Sun, Y.Q. and Hirsch, P.B., Phil. Mag. A; 67, 29 (1993).Google Scholar
16. Saada, G. and Veyssière, P., Phil. Mag. A, a) 66, 1081 (1992); b) 70, 925 (1994).Google Scholar
17. Caillard, D. and Molenat, G., Proc. 20th Risø Int. Symp. on Materials. Science: Deformation-Induced Microstructure: Analysis and Relation to Properties, ed. Bilde-Sørensen, J. B. et al., Risø National. Laboratory. (Roskilde, Denmark 1999) p. 1.Google Scholar
18. Coupeau, C. and Grilhé, J., J. of Mat. Sc. Eng. A, 271, 242 (1999).Google Scholar
19. Cheng, B., Carreno-Morelli, E., Baluc, N., Bonneville, J. and Schaller, R., Phil. Mag. A, 79, 2227 (1999).Google Scholar
20. Louchet, F., a) Phil. Mag. A, 72, 905 (1995) ;Google Scholar
b) Louchet, F., Phil. Mag. A, 77, 761 (1998).Google Scholar
21. Coupeau, C., Girard, J.C. and Grilhé, J., J. of Vacuum Sci. Technology B, 16 (4), 1964 (1998).Google Scholar
22. Coupeau, C., Cleymand, F. and Grilhé, J., Scripta Mat., 43, 187 (2000).Google Scholar