Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:56:36.705Z Has data issue: false hasContentIssue false

Size-Tunable Magnetofluorescent Nanoparticles as In Vivo Imaging

Published online by Cambridge University Press:  29 April 2014

Keisuke Sato
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, JAPAN. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN.
Kenji Hirakuri
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, JAPAN.
Kouki Fujioka
Affiliation:
Department of Molecular Cell Biology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, JAPAN.
Yoshinobu Manome
Affiliation:
Department of Molecular Cell Biology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, JAPAN.
Hiroaki Sukegawa
Affiliation:
Magnetic Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JAPAN.
Hideo Iwai
Affiliation:
Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JAPAN.
Naoki Fukata
Affiliation:
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN.
Get access

Abstract

Magnetic/fluorescent (magnetofluorescent) materials have become one of the most important tools in the imaging modality in vivo using magnetic resonance imaging (MRI) and fluorescence imaging. We succeeded in fabricating magnetofluorescent nanoparticles (MFNPs) consisting of silicon/magnetite composite nanoparticles. Our unique synthetic approach can control simultaneously the magnetic and fluorescence behaviors by varying the particle size, demonstrating the superparamagnetic behavior and green fluorescence for the MFNPs having mean diameter of 3.0 nm, and the ferromagnetic behavior without fluorescence for the MFNPs having mean diameter more than 5.0 nm. More intriguingly, the MFNPs with superparamagnetism can detect green fluorescence even after the magnetic guidance of MFNPs by the commercial neodymium magnet. Additionally, the MFNPs having two magnetic behaviors also possess good biocompatibility.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, J.-H., Maltzahn, G., Ruoslahti, E., Bhatia, S. N., and Sailor, M. J., Angew. Chem. Int. Ed. 47, 72847288 (2008).10.1002/anie.200801810CrossRefGoogle Scholar
Lai, C.-W., Wang, Y.-H., Lai, C.-H., Yang, M.-J., Chen, C.-Y., Chou, P.-T-, Chan, C.-S., Chi, Y., Chen, Y.-C., and Hsiao, J.-K., Small 4, 218224 (2008).10.1002/smll.200700283CrossRefGoogle Scholar
Cho, N.-H., Cheong, T.-C., Min, J. H., Wu, J. H., Lee, S. J., Kim, D., Yang, J. S., Kim, S., Kim, Y. K., and Seong, S.-Y., Nat. Nanotechnol. 6, 675682 (2011).10.1038/nnano.2011.149CrossRefGoogle Scholar
Sato, K., Yanagisawa, S., Funakubo, A., Fukui, Y., Hirakuri, K., and Higami, T., Mater. Res. Soc. Symp. Proc. 958, 0958L10-19 (2007).Google Scholar
Fujioka, K., Hiruoka, M., Sato, K., Manabe, N., Miyasaka, R., Hanada, S., Hoshino, A., Tilley, R. D., Manome, Y., Hirakuri, K., and Yamamoto, K., Nanotechnology 19, 415102 (2008).10.1088/0957-4484/19/41/415102CrossRefGoogle Scholar
Sato, K., Niino, K., Fukata, N., Hirakuri, K., and Yamauchi, Y., Nanotechnology 20, 365207 (2009).10.1088/0957-4484/20/36/365207CrossRefGoogle Scholar
Hiruoka, M., Sato, K., and Hirakuri, K., J. Appl. Phys. 102, 024308 (2007).10.1063/1.2756048CrossRefGoogle Scholar
Zhou, Z.-J., and Yan, J.-J., J. Magn. Magn. Mater. 115, 8798 (1992).10.1016/0304-8853(92)90186-RCrossRefGoogle Scholar
Bardhan, R., Chen, W., Torres, C. P., Bartels, M., Huschka, R. M., Zhao, L. L., Morosan, E., Pautler, R. G., Joshi, A., and Halas, N. J., Adv. Funct. Mater. 19, 39013909 (2009).10.1002/adfm.200901235CrossRefGoogle Scholar
Sato, K., Izumi, T., Iwase, M., Show, Y., Morisaki, H., Yaguchi, T., and Kamino, T., Appl. Surf. Sci. 216, 376381 (2003).10.1016/S0169-4332(03)00445-8CrossRefGoogle Scholar
Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Li, C., Tian, Y., Shi, X., and Gao, H.-J., Nanoscale 3, 701705 (2011).10.1039/C0NR00497ACrossRefGoogle Scholar
Wu, M. M., Shen, Y., Gu, F., Xie, Y. A., Zhang, J. C., and Wang, L. J., J. Sol-Gel. Sci. Technol. 53, 470474 (2010).10.1007/s10971-009-2099-7CrossRefGoogle Scholar
Park, J.-H., Maltzahn, G. V., Ruoslahti, E., Bhatia, S. N., Sailor, M. J., Angew. Chem., Int. Ed. 47, 72847288 (2008).10.1002/anie.200801810CrossRefGoogle Scholar
Lu, A.-H., Salabas, E. L., Schuth, F., Angew. Chem., Int. Ed. 46, 12221244 (2007).10.1002/anie.200602866CrossRefGoogle Scholar