Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:24:56.539Z Has data issue: false hasContentIssue false

Size-Induced Tetragonal to Monoclinic Phase Transition in Zirconia Nanocrystals.

Published online by Cambridge University Press:  01 February 2011

Gianguido Baldinozzi
Affiliation:
SPMS, UMR 8580 CNRS-Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, [email protected]
David Simeone
Affiliation:
SPMS, UMR 8580 CNRS-Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, [email protected] SRMA, CEA Saclay, 91191 Gif-sur-Yvette, [email protected]
Dominique Gosset
Affiliation:
SRMA, CEA Saclay, 91191 Gif-sur-Yvette, [email protected]
Michael Dutheil
Affiliation:
SRMA, CEA Saclay, 91191 Gif-sur-Yvette, [email protected]
Jan Kusinski
Affiliation:
SPMS, UMR 8580 CNRS-Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, [email protected] Academy of Mining and Metallurgy, AGH Krakow, PL
Get access

Abstract

Accurate neutron powder diffraction experiments at D20, ILL Grenoble, allowed to monitor the reconstructive tetragonal to monoclinic phase transition as a function of the size of zirconia nanoparticles. In the nanocrystals, both phases are identical to the ones generally observed in micrometric zirconia. Rietveld refinements on these samples point out an increase of the tetragonal fraction and a decrease of the lattice parameters when the size of the particle decreases. An uniaxial strain depending on the grain size is also observed. The phase transition definitely occurs above a threshold crystal size. These results are analysed within the Landau theory and they can be understood as a mechanism of size-dependent phase transition where the primary order parameter is altered by the nanoparticle size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Patil, R., Subbarao, E., Acta. Crystallogr. A. 26, 535 (1970).Google Scholar
[2] Mitssuhashi, T., Fujiki, Y., Tsukokia, M., Tsuda, N., J. Phys. Soc. Jap. 30, 1206 (1971).Google Scholar
[3] Hueur, A., Rühle, M., Acta. Metall. 12, 2101 (1985).Google Scholar
[4] Garvie, R., J. Phys. Chem. 69, 1238 (1965).Google Scholar
[5] Bondars, B., Heidemanne, G. A., Grabis, J., Laschke, K., Boysen, H., Schneider, J., Frey, F., J. Mat. Sci. 30, 1621 (1995).Google Scholar
[6] Djurado, E., Bouvier, P., Lucazeau, G., J. Solid State Chem. 149, 399 (2000).Google Scholar
[7] McHale, J., Auroux, A., Perrotta, A., Navrotsky, A., Science 277, 788 (1987).Google Scholar
[8] Nuth, J., Nature 329, 589 (1987).Google Scholar
[9] Garvie, R., J. Phys. Chem. 82 218 (1978).Google Scholar
[10] Mitsuhashi, T., Ichihara, M, Taksuke, U., J. Amer. Ceram. Soc. 57, 97101 (1974).Google Scholar
[11] Morgan, E., Comm. Amer. Ceram. Soc. 67, 204 (1984).Google Scholar
[12] Livage, J., Doi, K., Maziere, C., J. Amer. Ceram. Soc. 51, 549 (1968).Google Scholar
[13] Srinavasan, R., De Angelis, R., Davis, B., J. Mater. Res. 1, 583 (1986).Google Scholar
[14] Blakely, J., Introduction to the properties of Crystal Surfaces Pergamon Press (1973).Google Scholar
[15] Frey, F., Boysen, H., Vogt, T., Acta. Crystallogr. B. 46, 724 (1990).Google Scholar
[16] Boysen, H., Frey, F., Vogt, T., Acta. Crystallogr. B. 47, 881 (1991).Google Scholar
[17] Baldinozzi, G., Simeone, D., Gosset, D., Dutheil, M., Phys. Rev. Let. 90 216103 (2003)Google Scholar
[18] Simeone, D., Baldinozzi, G., Gosset, D‥, Dutheil, M., Bulou, A., Hansen, T., Phys. Rev. B. 67 064111 (2003).Google Scholar
[19] Negita, K., Takao, H., J. Phys. Chem. Solids 50, 1325 (1989).Google Scholar