Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:39:59.399Z Has data issue: false hasContentIssue false

Size-dependent Reactivity in the Functionalization of Nanostructured Silicon Surfaces

Published online by Cambridge University Press:  23 May 2011

Joel A. Kelly
Affiliation:
Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2, Canada
Amber M. Shukaliak
Affiliation:
Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2, Canada
Michael D. Fleischauer
Affiliation:
NRC- National Institute for Nanotechnology Edmonton Alberta T6G 2M9, Canada
Jonathan G.C. Veinot
Affiliation:
Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2, Canada
Get access

Abstract

The reactivity of silicon nanocrystals (Si-NCs) in near-UV photochemical hydrosilylation was evaluated as a function of size. Results show that Si-NCs with photoluminescence (PL) in the visible spectral region react faster than Si-NCs with near-IR PL. Fourier-transform infrared (FTIR) spectroscopy suggests this difference in reactivity is due to quantum size effects in the exciton-mediated mechanism proposed for this reaction. We have carried out a detailed comparison of Si-NC reactivity in photochemical and thermal hydrosilylation and determined the conditions under which Si-NCs may be size-selected based on their reactivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hessel, C. M., Rasch, M. R., Hueso, J. L., Goodfellow, B. W., Akhavan, V. A., Puvanakrishnan, P., Tunnel, J. W. and Korgel, B. A., Small, 2010, 6, 20262034.10.1002/smll.201000825Google Scholar
2. Erogbogbo, F., Yong, K.T., Roy, I., Xu, G. X., Prasad, P. N. and Swihart, M. T., ACS Nano, 2008, 2, 873878.10.1021/nn700319zGoogle Scholar
3. Park, J. Y., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N. and Sailor, M. J., Nat. Mater., 2009, 8, 331336.10.1038/nmat2398Google Scholar
4. Erogbogbo, F., Yong, K. T., Hu, R., Law, W.-., Ding, H., Chang, C. -., Prasad, P. N. and Swihart, M. T., ACS Nano, 2010, 4, 51315138.Google Scholar
5. Erogbogbo, F., Yong, K. T., Roy, I., Hu, R., Law, W., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M. T. and Prasad, P. N., ACS Nano, 2011, 5, 413423 (DOI:10.1021/nn1018945).10.1021/nn1018945Google Scholar
6. Veinot, J. G. C., Chem. Commun., 2006, 41604168.10.1039/b607476fGoogle Scholar
7. Buriak, J. M., Chem. Rev., 2002, 102, 12711308.10.1021/cr000064sGoogle Scholar
8. Kelly, J. A. and Veinot, J. G. C., ACS Nano, 2010, 4, 46454656.Google Scholar
9. Stewart, M. P. and Buriak, J. M., Journal of the American Chemical Society, 2001, 123, 78217830.10.1021/ja011116dGoogle Scholar
10. Brus, L. E., Szajowski, P. F., Wilson, W. L., Harris, T. D., Schuppler, S. and Citrin, P. H., J. Am. Chem. Soc., 1995, 117, 29152922.Google Scholar
11. De Boer, W. D. A. M., Timmerman, D., Dohnalová, K., Yassievich, I. N., Zhang, H., Buma, W. J. and Gregorkiewicz, T., Nat. Nanotechnol., 2010, 5, 878884.10.1038/nnano.2010.236Google Scholar
12. Weissleder, R., Nat. Biotechnol., 2001, 19, 316317.10.1038/86684Google Scholar
13. Jackson, H. L., McCormack, W. B., Rondestvedt, C. S., Smeltz, K. C. and Viele, I. E., J. Chem. Educ., 1970, 47, A175A188.10.1021/ed047pA175Google Scholar
14. Kelly, J. A., Henderson, E. J. and Veinot, J. G. C., Chem. Commun., 2010, 46, 87048718.10.1039/c0cc02609cGoogle Scholar
15. Hua, F., Swihart, M. T. and Ruckenstein, E., Langmuir, 2005, 21, 60546062.10.1021/la0509394Google Scholar
16. Reboredo, F. A., Schwegler, E. and Galli, G., J. Am. Chem. Soc., 2003, 125, 1524315249.10.1021/ja035254+Google Scholar