Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T12:18:42.474Z Has data issue: false hasContentIssue false

Size Effects on the Thermal Properties of Self-assembled Ge Quantum Dots in Single-crystal Silicon

Published online by Cambridge University Press:  31 January 2011

Jean-Numa Gillet*
Affiliation:
[email protected], University of Lille 1, Physics, UFR de Physique, Local 339, P5, Villeneuve d'Ascq Cedex, 59655, France, 01132487693284
Get access

Abstract

Superlattices with an ultra-low thermal conductivity were extensively studied to design thermoelectric materials. However, since they are made up of superposed materials showing lattice mismatches, they often show cracks and dislocations. Therefore, it is challenging to fabricate superlattices with a thermoelectric figure of merit ZT higher than unity. Moreover, like nanowires, they decrease heat transport in only one main direction. Self-assembly from epitaxial layers on a Si substrate is a major bottom-up technology to fabricate 3D Ge quantum-dot (QD) arrays in Si, which have been used for 3D quantum-device applications. Using the model of the atomic-scale 3D phononic crystal, we showed that 3D high-density arrays of self-assembled Ge QDs in Si can also show an ultra-low thermal conductivity in 3D, which can be several orders of magnitude lower than that of bulk Si. As a result, they can be considered to design novel 3D thermoelectric devices showing CMOS compatibility. In an example QD crystal, the thermal conductivity can be decreased below only 0.2 W/m/K. The main objective of this paper is to show the size dependence of the thermal conductivity versus the supercell lattice parameter d. For a constant QD-crystal filling ratio x = 12.5 at%, a decrease of the thermal conductivity is observed for an increasing d. This analysis enables us to predict that the optimal d-value will be of the order of 11 nm for the given filling ratio. At this optimum, the thermal conductivity decreases to the global minimum value of 0.9 W/m/K. The presented results are a first step towards the optimal design of thermoelectric devices with a maximal ZT obtained by global optimization of the size parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, W. Zide, J. Gossard, A. Klenov, D. Stemmer, S. Shakouri, A. and Majumdar, A. Phys. Rev. Lett. 96, 045901 (2006).Google Scholar
2 Chen, G. ASME J. Heat Transfer 121, 945953 (1999).Google Scholar
3 Hochbaum, A. I. Chen, R. Delgado, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A., and Yang, P. Nature 451, 163167 (2008).Google Scholar
4 Boukai, A. I. Bunimovich, Y. Tahir-Kheli, J., Yu, J.-K., Goddard, W. A. III , and Heath, J. R. Nature 451, 168171 (2008).Google Scholar
5 Volz, S. and Chen, G. Appl. Phys. Lett. 75, 20562058 (1999).Google Scholar
6 Chiritescu, C. Cahill, D. G. Nguyen, N. Johnson, D. Bodapati, A. Keblinski, P. and Zschack, P., Science 315, 351353 (2007).Google Scholar
7 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818821 (2004).Google Scholar
8 Harman, T. C. Taylor, P. J. Walsh, M. P. and LaForge, B. E. Science 297, 22292232 (2002).Google Scholar
9 Venkatasubramanian, R. Siivola, E. Colpitts, T. and O'Quinn, B., Nature 413, 597602 (2001).Google Scholar
10 Volz, S. Lemonnier, D. and Saulnier, J. B. Microscale Thermophys. Eng. 5, 191207 (2001).Google Scholar
11 Gillet, J.-N. Chalopin, Y. and Vols, S. ASME J. Heat Transfer 131, 043206 (2009).Google Scholar
12 Chen, H. Luo, X. and Ma, H. Phys. Rev. B 75, 024306 (2007).Google Scholar
13 Yang, S. Page, J. H. Liu, Z. Cowan, M. L. Chan, C. T. and Sheng, P. Phys. Rev. Lett. 93, 024301 (2004).Google Scholar
14 Yang, S. Page, J. H. Liu, Z. Cowan, M. L. Chan, C. T. and Sheng, P. Phys. Rev. Lett. 88, 104301 (2002).Google Scholar
15 Cahill, D. G. Watson, S. K. and Pohl, R. O. Phys. Rev. B 46, 61316140 (1992).Google Scholar
16 Kim, W. and Majumdar, A. J. Appl. Phys. 99, 084306 (2006).Google Scholar
17 Dove, M. T. Introduction to Lattice Dynamics, Cambridge Topics in Mineral Physics and Chemistry Chemistry, No 4 (Cambridge Univ. Press, Cambridge, UK, 1993).Google Scholar
18 Jian, Z. Kaiming, Z. and Xide, X. Phys. Rev. B 41, 1291512918 (1990).Google Scholar
19 Chalopin, Y. Gillet, J.-N., and Volz, S. Phys. Rev. B 77, 233309 (2008).Google Scholar
20 Glassbrenner, C. J. and Slack, G. A. Phys. Rev. 134, A1058–A1069 (1964).Google Scholar
21 Slack, G. A. and Galginaitis, S. Phys. Rev. 133, A253–A268 (1964).Google Scholar
22 Bohren, C. F. and Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).Google Scholar
23 Hulst, H. C. van de, Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar