Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:41:28.575Z Has data issue: false hasContentIssue false

Size Dependent Enhancement of Spin and Orbital Magnetism in CoRh Nanoparticles

Published online by Cambridge University Press:  21 March 2011

M. Muñoz-Navia
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Halle, D-06120, Germany Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78000, Mexico
J. Dorantes-Dávila
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78000, Mexico
C. Amiens
Affiliation:
Laboratoire de Chimie de Coordination, CNRS, Toulouse, 31077, France
B. Chaudret
Affiliation:
Laboratoire de Chimie de Coordination, CNRS, Toulouse, 31077, France
D. Zitoun
Affiliation:
Laboratoire de Chimie de Coordination, CNRS, Toulouse, 31077, France
M.-J. Casanove
Affiliation:
Centre d'Elaboration de Matériaux et d'Etudes Structurales, CNRS, Toulouse, 31077, France
P. Lecante
Affiliation:
Centre d'Elaboration de Matériaux et d'Etudes Structurales, CNRS, Toulouse, 31077, France
N. Jaouen
Affiliation:
European Synchrotron Radiation Facility, Grenoble, 38043, France
A. Rogalev
Affiliation:
European Synchrotron Radiation Facility, Grenoble, 38043, France
M. Respaud
Affiliation:
Laboratoire de Physique et Chimie des Nano-objets, INSA, Toulouse, 31077, France
G. M. Pastor
Affiliation:
Institut für Theoretische Physik, Universität Kassel, Heinrich Plett Str. 40, Kassel, D-34132, Germany
Get access

Abstract

The magnetism of CoRh nanoparticles (NPs) is investigated experimentally and theoretically. NPs of about 2 nm diameter have been synthesized by decomposition of organometallic precursors in mild conditions of pressure and temperature, under hydrogen atmosphere and in the presence of a polymer matrix. The magnetic properties are determined by SQUID and X-ray magnetic circular dichroism. All the studied CoRh clusters are magnetic with an average spin moment per atom that is significantly larger than the one of macroscopic crystals or alloys with similar concentrations. The experimental results and the comparison with theory suggest that the most likely chemical arrangement is a Rh core with a Co-rich outer shell and some degree of intermixing at the CoRh interface. A detailed analysis of the theoretical results from a local perspective shows that the spin and orbital moments of the Co and Rh atoms at the interface are largely responsible for the enhancement of the magnetization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for instance, Nanoscale Materials, Edited by Prashant Kamat, V. and Marzan, Luis M. Liz, (Kluwer Academic Press, 2002).Google Scholar
2. Bansmann, J., Baker, S. H., Binns, C., Blackman, J. A., Bucher, J.-P., Dorantes-D·vila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K.-H., Pastor, G. M., Perez, A., Toulemonde, O., Trohidou, K. N., Tuaillon, J., and Xie, Y., Surf. Sci. Rep. 56, 189275 (2005).Google Scholar
3. Cox, A.J., Louderback, J.G., and Bloomfield, L.A., Phys. Rev. Lett. 71, (1993) 923; A.J. Cox, J.G. Louderback, S.E. Apsel and L.A. Bloomfield, Phys. Rev. B 49, 12295 (1994).Google Scholar
4. Reddy, B.V., Khanna, S.N. and Dunlap, B.I., Phys. Rev. Lett. 70, 3323 (1993).Google Scholar
5. Villaseñor-González, P., Dorantes-Dávila, J., Pastor, G.M. and Dreyssé, H., Phys. Rev. B 55, 15084 (1997).Google Scholar
6. Zitoun, D., Respaud, M., Fromen, M.-C., Casanove, M. J., Lecante, P., Amiens, C., and Chaudret, B., Phys. Rev. Lett. 89, 037203 (2002).Google Scholar
7. Dennler, S., Morillo, J. and Pastor, G. M., J. Phys.: Condens. Matter 16 (2004) S2263; Surf. Sci. 532–535, 334 (2003).Google Scholar
8. Zitoun, D., Amiens, C., Chaudret, B., Respaud, M., Fromen, M.-C., Lecante, P., and Casanove, M. J., New J. Phys. 4 77.177.11 (2002).Google Scholar
9. Dassenoy, F., Casanove, M. J., Lecante, P., Verelst, M., Ely, T. Ould, Amiens, C. and Chaudret, B., J. Chem. Phys. 112 8137 (2000).Google Scholar
10. Thole, B.T., Carra, P., Sette, F. and van der Laan, G., Phys. Rev. Lett. 68 (1992) 1943; P. Carra, B.T. Thole, Massimo Altarelli and X. Wang, Phys. Rev. Lett. 70 694 (1993).Google Scholar
11. Guirado-López, R., Dorantes-Dávila, J. and Pastor, G.M., Phys. Rev. Lett. 90, 226402 (2003).Google Scholar
12. Nicolas, G., Dorantes-Dávila, J. and Pastor, G.M., Phys. Rev. B 74, 014415 (2006).Google Scholar
13. Christensen, N.E., Gunnarsson, O., Jepsen, O. and Andersen, O.K., J. Phys. (Paris) 49 (1988).Google Scholar
14. Bruno, P., Magnetismus von Festkörpern und Grenzflächen, Ferienkurse des Forschungs-zentrums Jülich (KFA Jülich, 1993), ISBN 3–89336–110–3, Ch. 24.Google Scholar