Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-22T14:37:50.546Z Has data issue: false hasContentIssue false

Size Dependent Electroluminescence from CdSe Nanocrystallites (Quantum Dots)

Published online by Cambridge University Press:  28 February 2011

B.O. Dabbousi
Affiliation:
MIT, Department of Chemistry, Cambridge, MA 02139
O. Onitsuka
Affiliation:
MIT, Department of Materials Science and Engineering, Cambridge, MA 02139
M.F. Rubner
Affiliation:
MIT, Department of Materials Science and Engineering, Cambridge, MA 02139
M.G. Bawendi
Affiliation:
MIT, Department of Chemistry, Cambridge, MA 02139
Get access

Abstract

We obtain spectrally narrow (FWHM < 40 nm) electroluminescence from nearly monodisperse CdSe nanocrystallites (quantum dots) incorporated into thin films of polyvinyl carbazole (PVK) and an oxadiazole derivative (PBD) sandwiched between aluminum and ITO electrodes. The electroluminescence and photoluminescence spectra are nearly identical at room temperature and are tunable from ∼530 nm to ∼650 nm by varying the size of the dots. Voltage studies at 77K indicate that while only the dots electroluminesce at the lower voltages, both the dots and the PVK matrix electroluminesce at higher applied voltages. Variable temperature studies indicate that the electroluminescence efficiency increases substantially as the films are cooled down to cryogenic temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See for example, Brus, L. E., Appl. Phys. A 53, 465 (1991) and references therein.Google Scholar
2 At the time of preparation of this manuscript Colvin, V., Schlamp, M., and Alivisatos, A. P., Nature 370, 354 (1994), reported similar electroluminescence results from devices of CdSe crystallites/PPV with ITO and Mg/Ag electrodes.Google Scholar
3 Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., and Holmes, A. B., Nature 347, 539 (1990).Google Scholar
4 Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1991).Google Scholar
5 Burn, P. L., Holmes, A. B., Kraft, A., Bradley, D. D. C., Brown, A. R., Friend, R. H., and Gymer, R. W., Nature 356, 47 (1992); C. Zhang, H. von Seggern, K. Pakbaz, B. Krabbel, H. W. Schmidt, and A. J. Heeger, Synth. Met. 62, 35 (1994).Google Scholar
6 Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
7 Mort, J. and Pfister, G., Electronic Properties of Polymers, (Wiley Interscience, New York, 1982), pp. 215265; R. H. Partridge, Polymer 24,748 (1983).Google Scholar
8 Burn, P. L., Holmes, A. B., Kraft, A., Brown, A. R., Bradley, D. D. C., and Friend, R. H., Mat. Res. Soc. Symp. Proc. 247, 647 (1992).Google Scholar
9 Bawendi, M. G., Carroll, P. J., Wilson, W. L., and Brus, L. E., J. Chem. Phys. 96, 946 (1992); M. Nirmal, C. B. Murray and M. G. Bawendi, Phys. Rev. B 50, 2293 (1994).Google Scholar
10 Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals, (Oxford University Press, New York, 1982).Google Scholar