Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T15:05:09.205Z Has data issue: false hasContentIssue false

Size- and Surface-dependent Photoresistance in SnO2 Nanowires

Published online by Cambridge University Press:  26 February 2011

Sanjay Mathur
Affiliation:
[email protected], Leibniz-Institute of New Materials, Nanokrystalline Materials and Thin Film Systems, Im Stadtwald, Gebaeude D2 2, Saarbrücken, Saarland, 66041, Germany, +49 681 9300 279
Sven Barth
Affiliation:
[email protected], Leibniz-Institute of New Materials, Nanocrystalline Materials and Thin Film Systems, Germany
Jae-Chul Pyun
Affiliation:
[email protected], Korea Institute of Science and Technology (KIST) Europe Forschungsgesellschaft mbH
Hao Shen
Affiliation:
[email protected], Leibniz-Institute of New Materials, Nanocrystalline Materials and Thin Film Systems
Get access

Abstract

Nanostructured one-dimensional materials, such as nanowires, tubes and rods, are gaining increasing attention due to interesting properties and confinement effects, however controlled synthesis of these structures is still limited to a few methods. We present here the synthesis of SnO2 nanowires (Ø, 50 – 1000 nm) at moderate temperatures (550 – 900 °C) using a molecular source [Sn(OBut)4] with pre-existent Sn-O bonds. The growth occurs via a catalyst driven vapor-solid-solid mechanism. Size-selective synthesis of NWs in high areal density was achieved by choosing Au particles of appropriate size. HR-TEM analysis reveals the single crystalline behaviour of wires with a preferred growth direction [100]. Use of SnO2 nanowires as potential optical switches for UV applications was demonstrated by the photo-response measurements. Determination of band gap values confirmed the blue-shift of the main photo-response peak with shrinking radial dimensions of the wires. Furthermore, deposition of vanadium oxide onto SnO2 led to a red-shift of the main conduction value of the nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] (a) Sze, S. M., Semiconductor Devices, John Wiley & Sons (2001). (b) G. Schmid, Nanoparticles: From Theory to Application, John Wiley & Sons (2004).Google Scholar
[2] Harrison, P. G. and Willet, M. J., Nature 332, 337 (1988).Google Scholar
[3] (a) Salehi, A., Gholizade, M., Sensors and Actuators B 89, 173 (2003);Google Scholar
(b) Salehi, A., Thin Solid Films 416, 260 (2002);Google Scholar
(c) Sberveglieri, G., Sensors and Actuators B 6, 239 (1992).Google Scholar
[4] Coles, G. S. V. and Williams, G., J. Mater. Chem. 2, 23 (1992).Google Scholar
[5] Liu, Z., Zhang, D., Han, S., Li, C., Tang, T., Jin, W., Liu, X., Lei, B. and Zhou, C., Adv. Mater. 15, 1754 (2003).Google Scholar
[6] (a) Law, M., Kind, H., Messer, B., Kim, F., Yang, P. D., Angew. Chem. Int. Ed. 41, 2405 (2002);Google Scholar
(b) Kolmakov, A., Zhang, Y. X., Cheng, G. S. and Moskovits, M., Adv. Mater. 15, 997 (2003).Google Scholar
[7] Dai, Z. R., Gole, J. L., Stout, J. D. and Wang, Z. L., J. Phys. Chem. B 106, 1274 (2002).Google Scholar
[8] Jiang, X. C., Wang, Y. L., Herricks, T. and Xia, Y. N., J. Mater. Chem. 14, 695 (2004).Google Scholar
[9] Zheng, M. J., Li, G. H., Zhang, X. Y., Huang, S. Y., Lei, Y., Zhang, L. D., Chem. Mater. 13, 3859 (2003).Google Scholar
[10] Ma, Y. J., Zhou, F., Lu, L. and Zhang, Z., Solid State Commun. 130, 317 (2004).Google Scholar
[11] Mathur, S., Barth, S., Shen, H., Pyun, J.-C., Werner, U., Small 1, 713 (2005).Google Scholar
[12] Hampden-Smith, M. J., Wark, T. A., Rheingold, A., Huffman, J. C., Can. J. Chem. 69, 121 (1991).Google Scholar
[13] Houlton, D. J., Jones, A. C., Haycock, P. W., Williams, E. P., Bull, J., Critchlow, G. W., Chem. Vap. Dep. 1, 26 (1995).Google Scholar
[14] a) Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F., Lieber, C. M., Appl. Phys. Lett. 78, 2214 (2001);Google Scholar
b) Cheung, C. L., Kurtz, A., Park, H., Lieber, C. M., J. Phys. Chem. B 106, 2429 (2002).Google Scholar
[15] (a) Harmand, J. C., Patriarche, G., Péré-Laperne, N., Mérat-Combes, M-N., Travers, L., Glas, F., Appl. Phys. Lett. 2005, 87, 203101;Google Scholar
(b) Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 2003, 15, 353.Google Scholar
[16] (a) Camagni, P., Faglia, G., Galinetto, P., Perego, C., Samoggia, G. and Sberveglieri, G., Sensors and Actuators B 31, 99 (1996);Google Scholar
(b) Comini, E., Faglia, G. and Sberveglieri, G., Sensors and Actuators B 78, 73 (2001).Google Scholar
[17] (a) Jerominek, H., Picard, F., Vincent, D., Optical Engineering 32, 2092 (1993);Google Scholar
(b) Hanlon, T. J., Walker, R. E., Coath, J. A., Richardson, M. A., Thin Solid Films 405, 234 (2002).Google Scholar
[18] Mathur, S., Shen, H., Sivakov, V. and Werner, U., Chem. Mater. 16, 2449 (2004).Google Scholar