Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T02:11:23.887Z Has data issue: false hasContentIssue false

Size and Shape Dependencies of Nanomaterial Properties: Thermodynamic Considerations

Published online by Cambridge University Press:  31 January 2012

Grégory Guisbiers*
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Catholic University of Louvain, 2 Place Sainte-Barbe, Louvain-La-Neuve, 1348, Belgium. E-mail : [email protected]
Get access

Abstract

A top-down approach using classical thermodynamics is presented in this paper to deduce size and shape dependencies of different material properties. Particular attention is focused on the thermal expansion coefficient. The theory developed here can also be used to deduce information on surface energies.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pitkethly, M. J., Materials Today 7(Supplement 1), 20 (2004).Google Scholar
2. Gleiter, H., Acta Materialia 48, 1 (2000).Google Scholar
3. Lieber, C. M. and Wang, Z. L., MRS Bulletin 32, 99 (2007).Google Scholar
4. Sutter, E. and Sutter, P., Nano Letters 8, 411 (2008).Google Scholar
5. Yacaman, M. J., Ascencio, J. A., Liu, H. B. and Gardea-Torresdey, J., Journal of Vacuum Science & Technology B 19, 1091 (2001).Google Scholar
6. Sun, C. Q., Progress in Solid State Chemistry 35, 1 (2007).Google Scholar
7. Roduner, E., Chemical Society Reviews 35, 583 (2006).Google Scholar
8. Richman, E. K. and Hutchison, J. E., ACS Nano 3, 2441 (2009).Google Scholar
9. Campbell, T. A., Nano Today 4, 380 (2009).Google Scholar
10. Delogu, F., Nanotechnology 18, 325706 (2007).Google Scholar
11. Barnard, A. S., Reports on Progress in Physics 73, 086502 (2010).Google Scholar
12. Guisbiers, G. and Buchaillot, L., Physics Letters A 374, 305 (2009).Google Scholar
13. Guisbiers, G., Nanoscale Research Letters 5, 1132 (2010).Google Scholar
14. Halperin, W. P., Review of Modern Physics 58, 533 (1986).Google Scholar
15. Reichl, L. E.. “A Modern Course in Statistical Physics” (Wiley-Interscience, 1998).Google Scholar
16. Rowlinson, J. S., Molecular Physics 104, 3399 (2006).Google Scholar
17. Hill, T. L., Journal of Chemical Physics 36, 3182 (1962).Google Scholar
18. Weissmüller, J., Bunzel, P. and Wilde, G., Scripta Materialia 51, 813 (2004).Google Scholar
19. Guisbiers, G. and Buchaillot, L., Journal of Physical Chemistry C 113, 3566 (2009).Google Scholar
20. Liang, L. H., Zhao, M. and Jiang, Q., Journal of Materials Science Letters 21, 1843 (2002).Google Scholar
21. Lu, H. M. and Jiang, Q., Journal of Physical Chemistry B 108, 5617 (2004).Google Scholar
22. Barnard, A. S. and Zapol, P., Journal of Chemical Physics 121, 4276 (2004).Google Scholar
23. Guisbiers, G., Kazan, M., Van Overschelde, O., Wautelet, M. and Pereira, S., Journal of Physical Chemistry C 112, 4097 (2008).Google Scholar
24. Yang, C. C., Xiao, M. X., Li, W. and Jiang, Q., Solid State Communications 139, 148 (2006).Google Scholar
25. Lee, L.-H., Journal of Non-Crystalline Solids 6, 213 (1971).Google Scholar
26. Martienssen, W. and Warlimont, H.. “Springer Handbook of Condensed Matter and Materials Data” (Springer, 2005).Google Scholar
27. Vitos, L., Ruban, A. V., Skriver, H. L. and Kollar, J., Surface Science 411, 186 (1998).Google Scholar