Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:49:35.805Z Has data issue: false hasContentIssue false

Size and Density Separation in Granular Materials

Published online by Cambridge University Press:  11 February 2011

Matthias MöBius
Affiliation:
James Franck Instituteand Department of Physics, The University of Chicago, Chicago, IL 60637
Sidney R. Nagel
Affiliation:
James Franck Instituteand Department of Physics, The University of Chicago, Chicago, IL 60637
Heinrich M. Jaeger
Affiliation:
James Franck Instituteand Department of Physics, The University of Chicago, Chicago, IL 60637
Get access

Abstract

We review mechanisms leading to the separation of granular mixtures according to the size or density of the constituent particles. Besides a general overview, the focus of this article is on separation induced by vertical vibrations of the vessel holding the granular material, and specifically on recent results showing a density-dependence to the separation process. A convenient measure of the separation speed is the rise time of a larger “intruder particle” from some fixed initial depth to the free surface, where it will remain. Recent experiments have shown that for large intruder sizes the rise time depends on the density of the intruder particle. Furthermore, in three-dimensional systems we found that this density dependence is highly nonmonotonic. While there is no detailed theoretical understanding available yet, our experiments demonstrate that this surprising behavior is produced by interactions not only between the large intruder particle and the smaller particles of the surrounding granular bed, but also between the particles and the interstitial air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaeger, H. M., Nagel, S. R., and Behringer, R. P., Review of Modern Physics 68, 1259 (1996).Google Scholar
2. Bridgewater, J., Powder Technol. 15, 215 (1976).Google Scholar
3. Williams, J. C., Powder Technol. 15, 245 (1976).Google Scholar
4. Savage, S. B., Developments in Engineering Mechanics, 347 (1987).Google Scholar
5. Fan, L. T., and Chen, Y.-M., Powder Technol. 61, 255 (1990).Google Scholar
6. Shinbrot, T., and Muzzio, F., Physics Today 53, 25 (2000).Google Scholar
7. Ridgway, K., and Rupp, R., Powder Technol. 4, 195 (1970/1971).Google Scholar
8. Bridgwater, J., Foo, W. S., and Stephens, D. J., Powder Technol. 41, 147 (1985).Google Scholar
9. Nakagawa, M., Chem. Eng. Sci. 49, 2540 (1994).Google Scholar
10. Hill, K. M., and Kakalios, J., Phys. Rev. E 49, R3610 (1994).Google Scholar
11. Zik, O., et al., Phys. Rev. Lett. 73, 644 (1994).Google Scholar
12. Metcalfe, G., Shinbrot, T., and Ottino, J. M., Nature 374, 39 (1995).Google Scholar
13. Clement, E., Rajchenbach, J., and Duran, J., Europhys. Lett. 30, 7 (1995).Google Scholar
14. McCarthy, J. J., et al., AIChE Journal 42, 3351 (1996).Google Scholar
15. Khakhar, D. V., et al., Phys. Fluids 9, 31 (1997).Google Scholar
16. Makse, H. A., et al., Nature 386, 379 (1997).Google Scholar
17. Choo, K., Molteno, T. C. A., and Morris, S. W., Phys. Rev. Lett. 79, 2975 (1997).Google Scholar
18. Nakagawa, M., et al., Chem. Eng. Sci. 52, 4423 (1997).Google Scholar
19. Hill, K. M., Caprihan, A., and Kakalios, J., Phys. Rev. Lett. 78, 50 (1997).Google Scholar
20. Khosropour, R., et al., Phys. Rev. E 56, 4467 (1997).Google Scholar
21. Karion, A., and Hunt, M. L., Powder Technol. 109, 145 (2000).Google Scholar
22. Jullien, R., and Meakin, P., Nature 344, 425 (1990).Google Scholar
23. Jullien, R., and Meakin, P., Phys. Rev. Lett. 69, 640 (1992).Google Scholar
24. Duran, J., Rajchenbach, J., and Clement, E., Phys. Rev. Lett. 70, 2431 (1993).Google Scholar
25. Rosato, A., et al., Phys. Rev. Lett. 58, 1038 (1987).Google Scholar
26. Knight, J. B., Jaeger, H. M., and Nagel, S., Phys. Rev. Lett. 70, 3728 (1993).Google Scholar
27. Ehrichs, E. E., et al., Science 267, 1632 (1995).Google Scholar
28. Knight, J. B., et al., Phys. Rev. E 54, 5726 (1996).Google Scholar
29. Knight, J. B., Jaeger, H. M., and Nagel, S. R., in Advances in Fluidization and Fluid-Particle Systems King, D., Arastoopour, H., Chen, J. C., Weimer, A. W., Yang, W.-C., Eds. (American Institute of Chemical Engineers, New York, 1997), Vol. 93, pp. 109.Google Scholar
30. Knight, J. B., Phys. Rev. E 55, 6016 (1997).Google Scholar
31. Shinbrot, T., and Muzzio, F. J., Phys. Rev. Lett. 81, 4365 (1998).Google Scholar
32. Liffman, K., et al., Gran. Matt. 3 (2001).Google Scholar
33. Hong, D. C., Quinn, P. V., and Luding, S., Phys. Rev. Lett. 86, 3423 (2001).Google Scholar
34. Burtally, N., King, P. J., and Swift, M. R., Science 295, 1877 (2002).Google Scholar
35. Aoki, K. M., et al., Phyiscal Review E 54, 874 (1996).Google Scholar
36. Pak, H. K., and Behringer, R. P., Nature 371, 231 (1994).Google Scholar
37. Möbius, M. E., et al., Nature 414, 270 (2001).Google Scholar
38. Möbius, M. E., Nagel, S. R., and Jaeger, H. M., (in preparation).Google Scholar