Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T21:34:17.731Z Has data issue: false hasContentIssue false

SiO2/SiC Interface Properties on Various Surface Orientations

Published online by Cambridge University Press:  11 February 2011

Hiroshi Yano
Affiliation:
Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0101, Japan.
Taichi Hirao
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan.
Tsunenobu Kimoto
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan.
Hiroyuki Matsunami
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan.
Get access

Abstract

The interface properties of MOS capacitors and MOSFETs were characterized using the (0001), (1120), and (0338) faces of 4H-SiC. (0001) and (1120) correspond to (111) and (110) in cubic structure. (0338) is semi-equivalent to (100). The interface states near the conduction band edge are discussed based on the capacitance and conductance measurements of n-type MOS capacitors at a low temperature and room temperature. The (0338) face indicated the smallest interface state density near the conduction band edge and highest channel mobility in n-channel MOSFETs among these faces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K., and Sugawara, Y., IEEE Electron Device Lett. 20, 611 (1999).Google Scholar
2. Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K., and Sugawara, Y., Mater. Sci. Forum 338–342, 1105 (2000).Google Scholar
3. Yano, H., Hirao, T., Kimoto, T., and Matsunami, H., Jpn. J. Appl. Phys. 39, 2008 (2000).Google Scholar
4. Yano, H., Hirao, T., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 78, 374 (2001).Google Scholar
5. Yano, H., Kimoto, T., and Matsunami, H., Mater. Sci. Forum 353–356, 627 (2001).Google Scholar
6. Yano, H., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 81, 301 (2002).Google Scholar
7. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981) p.385.Google Scholar
8. Nakayama, K., Miyanagi, Y., Shiomi, H., Nishino, S., Kimoto, T., and Matsunami, H., Mater. Sci. Forum 389–393, 123 (2002).Google Scholar
9. Hirao, T., Yano, H., Kimoto, T., Matsunami, H., and Shiomi, H., Mater. Sci. Forum 389–393, 1065 (2002).Google Scholar
10. Yano, H., Hirao, T., Kimoto, T., Matsunami, H., and Shiomi, H., Appl. Phys. Lett. 81, 4772 (2002).Google Scholar
11. Kimoto, T., Yamamoto, T., Chen, Z. Y., Yano, H., and Matsunami, H., J. Appl. Phys. 89, 6105 (2001).Google Scholar
12. Kimoto, T., Nakazawa, S., Fujihira, K., Hirao, T., Nakamura, S., Chen, Y., Hashimoto, K., and Matsunami, H., Mater. Sci. Forum 389–393, 165 (2002).Google Scholar
13. Nicollian, E. H. and Goetzberger, A., Bell. Sys. Tech. J. 46, 1055 (1967).Google Scholar
14. Brews, J. R., Solid-State Electron. 26, 711 (1983).Google Scholar
15. Afanas'ev, V. V., Stesmans, A., Bassler, M., Pensl, G., and Schulz, M. J., Appl. Phys. Lett. 76, 336 (2000).Google Scholar
16. Bassler, M., Afanas'ev, V., Pensl, G., and Schulz, M., Mater. Sci. Forum 338–342, 1065 (2000).Google Scholar
17. Shenoy, J. N., Das, M. K., Cooper, J. A. Jr, Melloch, M. R., and Palmour, J. W., J. Appl. Phys. 79, 3042 (1996).Google Scholar
18. Afanas'ev, V. V., Bassler, M., Pensl, G., Schulz, M. J., and von, E. S. Kamienski, J. Appl. Phys. 79, 3108 (1996).Google Scholar
19. Ghibaudo, G., Electronic. Lett. 24, 543 (1988).Google Scholar