Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T20:43:05.271Z Has data issue: false hasContentIssue false

SiO2 Formation at the Aluminum Oxide/Si(100) Interface

Published online by Cambridge University Press:  11 February 2011

A. Roy Chowdhuri
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607–7000., USA.
C. G. Takoudis
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607–7000., USA.
R. F. Klie
Affiliation:
Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607–7059., USA.
N. D. Browning
Affiliation:
Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607–7059., USA.
Get access

Abstract

Thin films of aluminum oxide were deposited on clean Si(100) substrates using trimethylaluminum and oxygen at 300°C. Infrared spectroscopic and x-ray photoelectron spectroscopic analyses of these films showed no aluminum silicate or SiO2 phase formation at the film/substrate interface. The O/Al ratio in the as deposited film was found to be higher than that in stoichiometric Al2O3. On annealing the as deposited samples in Ar at higher temperatures, a peak due to the transverse optical phonon for the Si-O-Si stretching mode appeared in the infrared spectra. A combination of Z-contrast imaging and electron energy loss spectroscopy in the scanning transmission electron microscope confirmed that the annealed samples developed a layer of silicon dioxide at the aluminum oxide-Si interface. Z-contrast images and electron energy loss spectra, obtained while heating the sample inside the scanning transmission electron microscope were used to follow the interfacial SiO2 formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilk, G. D., Wallace, R. M., Anthony, J. M., J. Appl. Phys. 89(10), 5243 (2001).Google Scholar
2. Guha, S., Cartier, E., Bojarczuk, N. A., Bruley, J., Gignac, L. and Karasinski, J., J. Appl. Phys. 90 (1), 512 (2001).Google Scholar
3. Kim, Y.-C., Park, H.-H., Chun, J. S. and Lee, W.-J., Thin Solid Films, 237, 57 (1994).Google Scholar
4. Katz-Tsameret, Z. and Raveh, A., J. Vac. Sci. Technol. A 13(3), 1121 (1995).Google Scholar
5. Segda, B. G., Jacquet, M. and Besse, J. P., Vacuum, 62, 27 (2001).Google Scholar
6. Roy Chowdhuri, A., Takoudis, C. G., Klie, R. F., and Browning, N. D., Appl. Phys. Lett. 80(22), 4241 (2002).Google Scholar
7. James, E. M. and Browning, N. D., Ultramicroscopy 78, 125 (1999).Google Scholar
8. James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Electr. Micr. 47(6), 561 (1998).Google Scholar
9. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum, New York (1986).Google Scholar
10. Browning, N. D., Chrisholm, M. F., and Pennycook, S. J., Nature 366, 143 (1993).Google Scholar
11. Nellist, P. D., and Pennycook, S. J., Ultramicroscopy 78, 111 (1999).Google Scholar
12. Jesson, D. E., and Pennycook, S. J., Proc. R. Soc. Lond. A 449, 273 (1995).Google Scholar
13. Wang, Q., Zhao, W., Lozano, J., Sun, Y.-M., Willson, C. G. and White, J. M., Appl. Surf. Sci. 183, 182 (2001).Google Scholar
14. Paparazzo, E., Vacuum 62 (1), 47 (2001).Google Scholar
15. Batson, P. E., Nature 366, 727 (1993)Google Scholar
16. Halvarsson, M., Larsson, A. and Ruppi, S., Micron 32 (8), 807 (2001).Google Scholar
17. Suenaga, K., Bouchet, D., Colliex, C., Thorel, A. and Brandon, D. G., J. Eur. Ceram. Soc. 18 (10), 1453 (1998).Google Scholar