Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T22:41:52.270Z Has data issue: false hasContentIssue false

Singular Interfacial Hydrodynamics and the Dielectric Breakdown Model

Published online by Cambridge University Press:  03 September 2012

H.G.E. Hentschel*
Affiliation:
Emory University, Department of Physics, Rollins Research Center, Atlanta, GA 30322
Get access

Abstract

The equations of motion for the interfacial dynamics in the dielectric breakdown model are derived. They form a set of coupled hydrodynamic equations for the interfacial curvature and growth probability in which the conserved densities are transported by a nonlocal velocity. From these equations the dynamical manner in which singularities in these conserved densities evolve can be studied both analytically and numerically. Shock-like behaviour associated with velocity attractor and repellor points on the evolving interface lead to bifurcations in the velocity field and finally to fractal structures in the curvature and growth probability in the absence of surface tension. In the presence of surface tension spatiotemporal chaos is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Witten, T.A. Jr. and Sander, L.M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
2. Niemeyer, L., Pietronero, L., Wiesmann, H.J., Phys. Rev. Lett. 52, 1033 (1984).Google Scholar
3. Brady, R.M. and Ball, R.C., Nature 309, 225 (1984).Google Scholar
4. Matshushita, M., Sano, M., Hayakawa, Y., Honjo, H., Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).Google Scholar
5. Paterson, L., Phys. Rev. Lett. 52, 1621 (1984).Google Scholar
6. Family, F., Masters, B.R., and Platt, D.E., Physica D38, 98 (1989).Google Scholar
7. Caserta, F., Stanley, H.E., Eldred, W.D., Daccord, G., Hausman, R.E. and Nittman, J., Phys.Rev. Lett. 64, 95 (1990).Google Scholar
8. Vicsek, T., Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
9. See Meakin, P., in Phase Transitions and Critical Phenomena. edited by Domb, C. and Lebowitz, J. L. (Academic Press, Orlando, 1988).Google Scholar
10. Hentschel, H.G.E. and Procaccia, I., Physica 8D, 435 (1983).Google Scholar
11. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I., Phys. Rev. A33, 1141 (1986).Google Scholar
12. Halsey, T.C., Meakin, P., and Procaccia, I., Phys. Rev. Lett. 56, 854 (1986).Google Scholar
13. Mullins, W.W. and Sekerka, R.F., J. App. Phys. 52, 1 (1963).Google Scholar
14. See for example Dynam rics of Curved Fronts edited by Pelce, Pierre (Perspectives in Physics, Academic Press 1990).Google Scholar
15. Bensimon, D., Kadanoff, L.P., Liang, S., Schraiman, B.I., Tang, C., Rev. Mod. Phys. 58, 977 (1986); in Directions in Condensed Matter Physics edited by G. Grinstein and G. Mazenko (World Scientific, Singapore 1986).Google Scholar
16. Saffman, P.G. and Taylor, G.I., Proc. Roy. Soc. Lond. A245, 312 (1958).Google Scholar
17. Taylor, G.I., Proc. Roy. Soc. Lond. A201, 192 G.I. (1950).Google Scholar
18. DeGregoria, A.J., and Schwartz, L.W. J. Fluid Mech., 164, 383 (1986).Google Scholar
19. Bensimon, D., Phys. Rev. A33, 1302 (1986).Google Scholar
20. Maher, J., Phys. Rev. Lett. 54, 1498 (1985).Google Scholar
21. Tabeling, P. and Libchaber, A., Phys. Rev. A33, 794 (1986); P. Tabeling, G. Zocchi, A. Libchaber, J. Fluid Mech. 177, 67 (1987).Google Scholar
22. Shraiman, B. and Bensimon, D., Phys. Rev. A30, 2840 (1984); in Kinetics of Aggregation and Gelation, edited by F. Family and D.P. Landau (Elsevier, North-Holland 1984) pp. 29-32.Google Scholar
23. Galin, L.A., Dokl. Akad. Nauk. SSSR 47, 246 (1945).Google Scholar
24. Polubarinova-Kochina, P. Ya, Dokl. Akad. Nauk. SSSR 47, 254 (1945).Google Scholar
25. Blumenfeld, R., Phys. Rev. E50, 2952 (1994).Google Scholar
26. Richardson, S., J. Fluid. Mech. 56, 609 (1972).Google Scholar
27. M. Mineev, B., Physica D43, 288 (1990).Google Scholar
28. Brower, R.C., Kessler, D.A., Koplik, J., Levine, H., Phys. Rev. A29, 1335 (1984); Phys. Rev. A30, 3161 (1984); Phys. Rev.Lett. 51, 1111 (1983).Google Scholar
29. Kardar, M., Parisi, G., and Zhang, Y., Phys. Rev. Lett. 56, 889 (1986).Google Scholar