Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:09:02.272Z Has data issue: false hasContentIssue false

Single-Photon Ionization, In Situ Optical Diagnostic Of Molecular Beam Epitaxial Growth Of GaAs

Published online by Cambridge University Press:  15 February 2011

Adina K. Ott
Affiliation:
JILA, National Institute of Standards and Technology and University of Colorado, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309–0440
Sean M. Casey
Affiliation:
National Research Council Postdoctoral Fellow, National Institute of Standards and Technology
April L. Alstrin
Affiliation:
Present address, Quantum, 2270 S. 88th St., Louisville, CO 80028
Stephen R. Leone
Affiliation:
Staff member, Quantum Physics Division, National Institute of Standards and Technology
Get access

Abstract

Single-photon ionization time-of-flight mass spectrometry (SPI-TOFMS) is used in situ to monitor desorbing species and surface reactions during molecular beam epitaxy (MBE) of GaAs. In this method, the 1064 nm fundamental output of a Nd:YAG laser is tripled twice to produce 118 nm (10.5 eV) photons. The pulsed light is passed in front of a growing substrate, giving gaseous scattered molecules sufficient energy to ionize, but not fragment, them. Ionized species are detected with time-of-flight mass spectrometry. Arrangement of the experiment also allows for simultaneous real time monitoring with reflection high-energy electron diffraction (RHEED).

Mass spectra are examined and analyzed to quantify fluxes and relative ionization cross sections of growth species. The real time behavior of arsenic and gallium mass signals during epitaxy is presented as a function of substrate temperature and incident gallium flux. Surface reactions are proposed to elucidate mechanisms of arsenic incorporation and compared to measured RHEED results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsao, J. Y., Brennan, T. M., and Hammons, B. E., Appl. Phys. Lett 53, 288290 (1988).Google Scholar
2. SpringThorpe, A. J. and Mandeville, P., J. Vac. Sci. Technol. B 6, 754757 (1988).Google Scholar
3. Neave, J. H., Joyce, B. A., Dobson, P. J., and Norton, N., Appl. Phys. A 31, 18 (1983).Google Scholar
4. Neave, J. H., Dobson, P. J., Joyce, B. A., and Zhang, J., Appl. Phys. Lett. 47, 100102 (1985).Google Scholar
5. Lewis, B. F., Fernandez, R., Madhukar, A., and Grunthaner, F. J., J. Vac. Sci. Technol B 4, 560563 (1986).Google Scholar
6. Bosacchi, A., Franchi, S., Kanter, Yu. O., and Chikichev, S. I., J. Cryst. Growth 96, 899905 (1989).Google Scholar
7. Farley, C. W., and Sullivan, G. J., Mondry, M. J., and Miller, D. L., J. Cryst Growth 96, 1926 (1989).Google Scholar
8. Deparis, C. and Massies, J., J. Cryst. Growth 108, 157172 (1991).Google Scholar
9. Kung, A. H., Young, J. F., and Harris, S. E., Appl. Phys. Lett. 22, 301302 (1973).Google Scholar
10. Mahon, R., McIlrath, T. F., Myerscough, V. P., and Koopman, D. W., IEEE J. Quantum Electron. 15, 444451 (1979).Google Scholar
11. Hilbig, R. and Wallenstein, R., IEEE J. Quantum Electron. 17, 15661573 (1981).Google Scholar
12. Wiley, W. C. and McLaren, I. H., Rev. Sci. Instrum. 26, 11501157 (1955).Google Scholar
13. Strupp, P. G., Alstrin, A. L., Smilgys, R. V., and Leone, S. R., Appl. Opt. 32, 842846 (1993).Google Scholar
14. Foxon, C. T. and Joyce, B. A., Surf. Sci. 50, 434450 (1975).Google Scholar
15. Ott, A. K., Casey, S. M., Alstrin, A. L., and Leone, S. R., J. Vac. Sci. Technol A, submitted.Google Scholar