Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T08:21:41.687Z Has data issue: false hasContentIssue false

Single Osteoblast Chemical Sensor via Non-invasive Bio-Electronic Interface

Published online by Cambridge University Press:  01 February 2011

Mo Yang
Affiliation:
Mechanical Engineering Department, University of California, Riverside, CA 92521
Xuan Zhang
Affiliation:
Mechanical Engineering Department, University of California, Riverside, CA 92521
Bonnie Kohr
Affiliation:
Mechanical Engineering Department, University of California, Riverside, CA 92521
Andre Morgan
Affiliation:
Mechanical Engineering Department, University of California, Riverside, CA 92521
Cengiz S Ozkan
Affiliation:
Mechanical Engineering Department, University of California, Riverside, CA 92521
Get access

Abstract

The broad-spectrum sensitivity of cell based biosensors offers the capability for detecting known and unknown chemical/biological agents. One cellular parameter that is often measured is the extracellular potential of electrically active cells. Membrane excitability in osteoblasts plays a key role in modulating the electrical activity in the presence of chemical agents. However, the complexity of this signal makes interpretation of the cellular response to a chemical agent difficult to interpret. By analyzing shifts in the signal's power spectrum, it is possible to determine a frequency spectrum also known as Signature Pattern Vectors (SPV) specific to a chemical. We used a 5x5 multiple microelectrode array system to spatially position osteoblast cells, by using a gradient AC field. Fast Fourier Transformation (FFT) analyses were used to extract information pertaining to the frequency of firing from the extracellular potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McFadden, P., Science. 297, 2075 (2002)Google Scholar
2. Lin, V. S. Y., Motesharei, K., Dancil, K. P. S., Sailor, M. J., and Ghadiri, M. R. A., Science. 278, 840 (1997)Google Scholar
3. Turner, A. P. F., Science. 290, 1315 (2000)Google Scholar
4. Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Chen, G., Harris, J. M., Hoffman, A. S., Nature. 378, 472 (1995)Google Scholar
5. D'Orazio, P. A., Maley, T. C., McCaffrey, R. R., Chan, A. C., Orvedahl, D., Foos, J., Blake, D., Degnan, S., Benco, J., Murphy, C., Edelman, P. G., and Ludi, H., Clin. Chem. 43, 1804 (1997)Google Scholar
6. Riklin, A., Katz, E., Willner, I., Stocker, A., and Buckmann, A. F., Nature. 376, 672 (1995)Google Scholar
7. Edman, C. F., Raymond, D. E., Wu, D. J., Tu, E., Sosnowski, R. G., Butler, W. F., Nerenberg, M., and Heller, M. J., Nucleic Acids Res. 25, 4907 (1997)Google Scholar
8. Millan, K. M., and Mikkelsen, S. R., Anal. Chem. 65, 2317 (1993)Google Scholar
9. Benson, D. E., Conrad, D. W., DeLorimier, R. M., Trammell, S. A., and Hellinga, H. W., Science. 293, 1553 (2001)Google Scholar
10. Cornell, B. A., Braach-Maksvytis, V. L., King, L. G., Osman, P. D., Raguse, B., Wieczorek, L., and Pace, R. J., Nature. 387, 580 (1997)Google Scholar
11. Kasianowicz, J. J., Brandin, E., Branton, D., and Deamer, D. W., Proc. Natl. Acad. Sci. USA. 93, 13770 (1996)Google Scholar
12. Gross, G. W., Enabling Technologies for Cultured Neuronal Networks, Academic, San Diego, (1994)Google Scholar
13. Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B., and Xu, X., Anal. Chem. 74, 3362 (2002)Google Scholar
14. Gross, G. W., Williams, A. N., and Lucas, J. H., J. Neurosci. Methods. 5, 13 (1982)Google Scholar
15. Connolly, P., Clark, P., Curtis, A. S. G., Dow, J. A. T., and Wilkinson, C. D. W., Biosens. Bioelectron. 5, 223 (1990)Google Scholar
16. Rogers, K. R., Biosens. Bioelectron. 10, 533 (1995)Google Scholar
17. Kumar, P., Colston, J. T., Chambers, J. P., Rael, E. D., and Valdes, J. J., Biosens. Bioelectron. 9, 57 (1994)Google Scholar
18. Heitzer, A., Malachowsky, K., Thonnard, J. E., Bienkowski, P. R., White, D. C., and Sayler, G. S., Appl. Environ. Microbiol 60 (5), 1487 (1994).Google Scholar
19. Stenger, D. W., Trends in Biotechnology. 19, 304 (2001)Google Scholar
20. Pancrazio, J. J., Whelan, J. P., Borkholder, D. A., Ma, W., and Stenger, D. A. Annals of Biomedical Engr. 27, 697 (1999)Google Scholar
21. Paddle, B. M., Biosens. Bioelectron. 11, 1079 (1996)Google Scholar
22. Israel, D. A., Barry, W. H., Edell, D. J., and Mark, R. G., Am. J. Physiol. 247, H669 (1984)Google Scholar
23. Huang, Y., Wang, X. B., Becker, F. F. and Gascoyne, P. R., Biophys. J. 73, 1118 (1997)Google Scholar
24. Phillips, T. J., Brown, K. J., Burkhart-Kasch, S., Wenger, C. D., Kelly, M. A., Rubinstein, M., Grandy, D. K., and Low, M. J. Nature Neurosci. 1, 610 (1998)Google Scholar
25. Rodriguez, L. A., Plomin, R., Blizard, D. A., Jones, B. C., and McClearn, G. E., Alochol. Clin. Exp. Res. 19, 367 (1995)Google Scholar
26. Dumot, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Dröge, W., Lienhard, M. and Schmitz, A., Oncogene. 18, 747 (1999)Google Scholar
27. Badia, R., and Diaz-Garcia, M. E., J Agric Food Chem. 47 (10), 4256 (1997)Google Scholar
28. Haga, C. S., and Stern, P. H., J Endod. 19 (9), 462 (1993)Google Scholar
29. McConnell, H. M., Owicki, J. C., Parce, J. W., Miller, D. L., Baxter, G. T., Wada, H. G., and Pitchford, S., Science. 257, 1906 (1992)Google Scholar
30. Semler, D. E., Morris, D. L., and Stern, P. H., Cell Calcium. 28 (1), 55 (2000)Google Scholar
31. Semler, D. E., Ohlstein, E. H., Nambi, P., Slater, C., Stern, P. H. J Pharmacol Exp Ther. 272 (3), 1052 (1995)Google Scholar
32. Giaever, I., and Keese, C. R., Nature. 366, 591 (1993)Google Scholar
33. Schimmel, M., and Bauer, G., Oncogene. 21, 5866 (2002)Google Scholar
34. Takayasu, T., Ohshima, T., and Kondo, T., Leg Med (Tokyo). 3(3), 157 (2001)Google Scholar