Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:04:07.068Z Has data issue: false hasContentIssue false

Single Crystal Elastic Moduli of Disordered Cubic Alloys

Published online by Cambridge University Press:  15 February 2011

Craig S. Hartley*
Affiliation:
U.S. Department of Energy, SC-131, Germantown, MD, 20874. [email protected]
Get access

Abstract

A review of the relationship between elastic moduli and interatomic force constants precedes the description of a method for determining the composition dependence of single crystal elastic moduli of disordered alloys having the face-centered cubic structure. The method treats the alloy as a virtual crystal, characterized by an effective pair potential between atoms. Results of calculations are presented using experimental data on Cu-rich Cu-Al alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The terms "elastic moduli" or "elastic constants" refer to either compliances or stiffnesses.Google Scholar
2. Gairola, B. K. D. and Kröner, E., Int. J. Eng. Sci., 19, p. 865 (1981).Google Scholar
3. Eisenberg, M. A., Hartley, C. S., Lee, H.-C. and Yen, C. F., J. Nucl. Mat, 88, p. 138 (1980).Google Scholar
4. Sayers, C. M., J. Phys. D: Appl. Phys., 15, p. 2157 (1982).Google Scholar
5. Hearmon, R. F. S., in Landholt- Bornstein New Series, Group II, 11, pp. 1221 (1979) and 18 pp. 512 (1984).Google Scholar
6. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd. Edition (MIT Press, Cambridge, MA, 1971).Google Scholar
7. Chevenard, P. and Portevin, A., Compt. Rend., 181, p. 780 (1925).Google Scholar
8. Guillet, L., Rev. Met., 36, p. 497 (1936).Google Scholar
9. Köster, W. and Rauscher, W., Zeit. f. Metallkde. 39, p. 111 (1948).Google Scholar
10. Shibuya, Y., Sci. Rep. RITU, A–3, p. 645 (1951).Google Scholar
11. Shibuya, Y., Sci. Rep. RITU, A–1, p. 161 (1949).Google Scholar
12. Niu, H. and Shimizu, M., J. Phys. Soc. Japan, 22, p. 437 (1967).Google Scholar
13. Hartley, C. S., in Metallic Alloys: Experimental and Theoretical Perspectives, ed. by Faulkner, J. S. and Jordan, R.G., (Kluwer Academic Press, Amsterdam, Netherlands, 1994), p. 171.Google Scholar
14. Fuchs, K., Proc. Roy. Soc. (London), A153, p. 622; A157, p. 444 (1936).Google Scholar
15. Johnson, R. A., Phys. Rev. B, 6, p. 2094 (1972).Google Scholar
16. Johnson, R. A., Phys. Rev. B, 9, p. 1304 (1974).Google Scholar
17. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, England (1956).Google Scholar
18. Launay, J. De, in Solid State Physics, ed. Seitz, F. and Turnbull, D. (Academic Press, 2, New York, 1956) p. 285.Google Scholar
19. Squires, G. L., Arkiv för Fysik, B and 25, nr 3, p. 21 (1963).Google Scholar
20. Summation from 1 to 3 over repeated Latin suffixes is implied unless otherwise indicated.Google Scholar
21. Zaretsky, J. L., Lattice Dynamics of hcp and bcc Zirconium (Ph.D. Dissertation, Iowa State University, 1979).Google Scholar
22. Bullough, R. and Hardy, J. R., Phil. Mag., 17, p. 833 (1968).Google Scholar
23. Cain, L. S. and Thomas, J.F. Jr., Phys. Rev. B, 4, p. 4245 (1971).Google Scholar
24. Gerlich, D. and Fisher, E.S., J. Phys. Chem. Solids, 30, p. 1197 (1969).Google Scholar
25. Sinha, S. K., Phys. Rev., 143, p. 422 (1966).Google Scholar
26. The definition of ASFC employed by B&H is twice that that employed in the present work.Google Scholar