Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:58:11.306Z Has data issue: false hasContentIssue false

Simultaneous Measurements of Thermal Conductivity and Seebeck Coefficients of Roughened Nanowire Arrays

Published online by Cambridge University Press:  02 August 2012

J. S. Sadhu
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, U.S.A.
T. Hongxiang
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, U.S.A.
J. Ma
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, U.S.A.
J. Kim
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, U.S.A.
S. Sinha
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, U.S.A.
Get access

Abstract

We report simultaneous measurements of thermal conductivity and Seebeck coefficient on array-scale silicon nanowires fabricated by metal assisted chemical etching. The measurements are conducted on the solid and the mesoporous nanowire arrays (NWAs) obtained from etching 1 ohm-cm and 0.002 ohm-cm Si substrates respectively. We demonstrate control on sidewall morphology and doping of the arrays that have an aspect ratio up to 20 and 30 % areal coverage. We employ differential frequency-domain measurements, separately on the array and the corresponding substrate to obtain the temperature drop and Seebeck voltage contribution of the nanowire array. The technique is validated by measurements on bulk silicon across the resistivity 0.002-1 ohm-cm. The Seebeck measurements reveal quenching of the phonon drag in the nanowires in comparison to the bulk in the measured temperature range of 300 K- 500 K. The Seebeck coefficient shows a ~18 % decrease in the solid NWAs and ~22 % increase in the mesoporous NWAs at room temperature. The thermal conductivity is close to Casimir limit for the solid wires while it drops to ~2.5 W/mK in the mesoporous nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., Yang, P.. Nature, 451, 163167 (2008).10.1038/nature06381Google Scholar
[2] Boukai, A. I., Bunimovich, Y., Kheli, J. T., Yu, J. K., Goddard, W. A., Heath, J. R., Nature 451, 168171 (2008).10.1038/nature06458Google Scholar
[3] Yu, J. K., Mitrovic, S., Tham, D., Varghese, J., Heath, J. R., Nature Nanotechnol. 5, 718721 (2010).10.1038/nnano.2010.149Google Scholar
[4] Tang, J., Wang, H. T., Lee, D. H., Fardy, M., Huo, Z., Russell, T. P., Yang, P., Nano Lett. 10, 42794283 (2010).10.1021/nl102931zGoogle Scholar
[5] Hippalgaonkar, K., Huang, B., Chen, R., Sawyer, K., Ercius, P., Majumdar, A.. Nano. Lett. 10, 43414348 (2010).10.1021/nl101671rGoogle Scholar
[6] Lim, J., Hippalgaonkar, K., Andrews, S. C., Majumdar, A., Yang, P., Nano Lett., 1204231005 (2012).Google Scholar
[7] Casimir, H. G. B., Physica 5, 495 (1938).10.1016/S0031-8914(38)80162-2Google Scholar
[8] Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.. Phys. Rev. Lett. 102, 125503 (2009).10.1103/PhysRevLett.102.125503Google Scholar
[9] Sadhu, J., Sinha, S., Phys. Rev. B 84, 115450 (2011).10.1103/PhysRevB.84.115450Google Scholar
[10] Herring, C., Phys. Rev. 96, 1163 (1954).10.1103/PhysRev.96.1163Google Scholar
[11] Geballe, T. H., Hull, G. W., Phys. Rev. 98, 940947 (1955).10.1103/PhysRev.98.940Google Scholar
[12] Li, X. and Bohn, P. W., Appl. Phys. Lett. 77, 25722574 (2000).10.1063/1.1319191Google Scholar
[13] Kim, P., Shi, L.., Majumdar, A., McEuen, P. L., Phys. Rev. Lett., 87, 215502 (2001).10.1103/PhysRevLett.87.215502Google Scholar
[14] Harman, T.C., Cahn, J.H., Logan, M.J., J. Appl. Phys. 30, 1351 (1959).10.1063/1.1735334Google Scholar
[15] Bian, R. Z., Zhang, Y., Schmidt, H., Shakouri, A., Proc. of Intl. Conf. on Thermoelec., 7678 (2005)Google Scholar
[16] Venkatasubramanian, , Siivola, E., Colpitts, T., O’Quinn, B., Nature 413, 597602 (2001).10.1038/35098012Google Scholar
[17] Cahill, D. G., Rev. Sci. Instrum. 61, 802808 (1990).10.1063/1.1141498Google Scholar
[18] Yang, B., Liu, J. L., Wang, K. L., Chen, G., Appl. Phys. Lett. 80, 1758 (2002).10.1063/1.1458693Google Scholar
[19] Curtin, B. M., Bowers, J. E., MRS Proceedings 1408, mrsf11-1408-bb11-02 (2012)10.1557/opl.2012.194Google Scholar
[20] Hochbaum, A., Gargas, D., Yang, P., Nano Lett. 9, 3550 (2009).10.1021/nl9017594Google Scholar
[21] Yamashita, O., Sadatomi, N., Jpn. J. Appl. Phys. 38, 63946400 (1999).10.1143/JJAP.38.6394Google Scholar