Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:32:10.510Z Has data issue: false hasContentIssue false

Simultaneous Implant Activation and Isolation Formation in GaAs in a Single High-Temperature Anneal

Published online by Cambridge University Press:  26 February 2011

Kei-Yu Ko
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650–2011
S. Chen
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650–2011
G. Braunstein
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650–2011
L.-R. Zheng
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650–2011
S.-T. Lee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650–2011
Get access

Abstract

Using void-related compensation in Al-implanted GaAs, high-resistivity isolation regions that are thermally stable to high temperatures (> 700 °C) are demonstrated. The high-temperature thermal stability of the isolation regions allows the simplification of device processing in which a single high-temperature anneal (e.g., at 900 °C) can be used to activate the implant dopants in the device-active regions, and simultaneously to convert the Al-implanted regions highly resistive for electrical isolation. Other advantages of using void-related isolation will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ko, K. Y., Chen, S., Lee, S. -T., and Braunstein, G., Appl. Phys. Lett. 60, 1223 (1992).CrossRefGoogle Scholar
2. Chen, S., Lee, S. -T., Braunstein, G., Ko, K. Y., and Tan, T. Y., J. Appl. Phys. 70, 656 (1991).CrossRefGoogle Scholar
3. Favennec, P. N., J. Appl. Phys. 42, 2532 (1976).CrossRefGoogle Scholar
4. Pearton, S. J., Materials Science Reports 4, 313 (1990).CrossRefGoogle Scholar
5. Short, K. T. and Pearton, S. J., J. Electrochem. Soc. 135, 2835 (1988).CrossRefGoogle Scholar
6. Morgan, D. V. and Eisen, F. H., in Gallium Arsenide, edited by Howes, M. J. and Morgan, D. V. (Wiley, New York, 1985), ch. 5.Google Scholar
7. Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C, and Williams, J. S., Nucl. Instrum. Methods Phys. Res. B 19/20, 369 (1987).CrossRefGoogle Scholar
8. Sadana, D. K., Nucl. Instrum. Methods Phys. Res. B7/8, 375 (1985).CrossRefGoogle Scholar
9. Pearton, S. J., Hull, R., Jacobson, D. C., Poate, J. M., and Williams, J. S., Appl. Phys. Lett. 48, 38 (1986).CrossRefGoogle Scholar
10. Townsend, P. D., Kelly, J. C., and Hartley, N. E. W., Ion Implantation. Sputtering and their applications (Academic Press, New York, 1976).Google Scholar