Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:27:55.038Z Has data issue: false hasContentIssue false

Simulations of Quantum Confinement in Self-Assembled InAs/GaAs Island Quantum Dot Arrays

Published online by Cambridge University Press:  17 March 2011

H.T. Johnson
Affiliation:
Department of Aerospace & Mechanical Engineering, Boston University, Boston, MA 02215
V. Nguyen
Affiliation:
Department of Aerospace & Mechanical Engineering, Boston University, Boston, MA 02215
A. F. Bower
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Get access

Abstract

Quantum confinement and photoluminescence properties of self-assembled InAs quantum dot arrays on GaAs substrates are studied theoretically using a coupled morphology/electronic structure finite element approach. Simulations of island evolution due to strain energy driven diffusive mass transport are first used to generate realistic island arrays. The resulting finite element meshes are input to a continuum, single charge-carrier model in which band structure properties are prescribed using a k•p Hamiltonian formulation. The results of the electronic properties analysis are spectra of electron and hole energies and corresponding wave functions. The electron and hole states have characteristics unique to arrays, the most prominent of which are the energy separations due to size and shape variations among dots in the array. This feature is shown to lead directly to inhomogeneous broadening in the photoemission spectra. Other phenomena observed here include the onset of a discrete density of states at the point of island formation during growth; the presence of states with wave functions coupling multiple dots in the array; and the nature of wetting layer states in the system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., Petroff, P. M., J. Appl. Phys. 63 3203 (1993).Google Scholar
2. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N., Le Roux, G., Appl. Phys. Lett. 47, 1099, (1985).Google Scholar
3. Floro, J. A., Chason, E., Twesten, R. D., Hwang, R. Q., Freund, L. B., Phys. Rev. Lett. 79, 3946, (1997).Google Scholar
4. Asaro, R. J., Tiller, W. A., Met. Trans. 3 1789 (1972).Google Scholar
5. Tersoff, J., Legoues, F. K., Phys. Rev. Lett. 72, 3570, (1994).Google Scholar
6. Freund, L. B., Acta Mech. Sinica 10, 16, (1994).Google Scholar
7. Leonard, D., Fafard, S., Pond, K., Zhang, Y. H., Merz, J. L, Petroff, P. M., J. Vac. Sci. Tech. B 12 2516 (1994).Google Scholar
8. Grundmann, M., et al. , Phys. Rev. Lett. 74., 4043 (1995).Google Scholar
9. Schmidt, K. H., Medeiros-Ribeiro, G., Oestreich, M., Petroff, P. M., Döhler, G. H., Phys. Rev. B54 11346 (1996).Google Scholar
10. Zunger, A., MRS Bull. 23 35 (1998).Google Scholar
11. Jiang, H., Singh, J. Phys. Rev. B56 4696 (1997).Google Scholar
12. Pryor, C., Phys. Rev. B57 7190 (1998).Google Scholar
13. Zhang, Y.W., Bower, A. F., J.Mech. Phys. Sol. 47 2273 (1999).Google Scholar
14. Johnson, H. T., Freund, L. B., Akyüz, C. D., Zaslavsky, A., J. Appl. Phys. 84 3714 (1998).Google Scholar
15. Johnson, H. T., Freund, L. B., Int. J. Sol. Struc. 38 1045 (2001).Google Scholar
16. Vdovin, E. E., Levin, A., Patanè, A., Eaves, L., Main, P. C., Khanin, Yu. N., Dubrovskii, V., Henini, M., Hill, G., Science 290 122 (2000).Google Scholar