Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:52:32.240Z Has data issue: false hasContentIssue false

Simulations of Lubricants in Confined Geometries

Published online by Cambridge University Press:  10 February 2011

Mark J. Stevens
Affiliation:
P.O. Box 5800, MS 1111, Sandia National Laboratory, Albuquerque, NM 87185–1111
Maurizio Mondello
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, An-nandale, NJ 08801
Gary S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, An-nandale, NJ 08801
Get access

Abstract

We examine the shear flow of hexadecane and squalane confined between plates with nm separation using molecular dynamics simulations. For both molecules substantial slip occurs at the walls and the density profile exhibits strong oscillations. In contrast to surface force apparatus measurements, our calculated effective viscosities are not much greater than bulk viscosities, but the simulations shear rates are much larger than the experimental ones. The actual viscosity calculated using the shear rate measured from the observed velocity profile is almost equal to the bulk viscosity within uncertainty.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Israelachvili, J. N., Intermolecular and Surface Forces, 2nd ed. (Academie Press, San Diego, 1992).Google Scholar
2. Israelachvili, J. N., McGuiggan, P. M., and Homola, A. M., Science 240, 189 (1988).Google Scholar
3. Israelachvili, J. N. and McGuiggan, P. M., Science 241, 795 (1988).Google Scholar
4. Alsten, J. V. and Granick, S., Phys. Rev. Lett. 61, 2570 (1988).Google Scholar
5. Hu, H.-W., Carson, G. A., and Granick, S., Phys. Rev. Lett. 66, 2758 (1991).Google Scholar
6. Granick, S., Science 253, 1374 (1991).Google Scholar
7. Klein, J., Perahia, D., and Warburg, S., Nature 352, 143 (1991).Google Scholar
8. Klein, J. and Kumacheva, E., Science 269, 5225 (1995).Google Scholar
9. Demirei, A. L. and Granick, S., Phys. Rev. Lett. 77, 2261 (1996).Google Scholar
10. Krim, J., Solina, D., and Chiarello, R., Phys. Rev. Lett. 66, 181 (1991).Google Scholar
11. Carson, G. A., Hu, H.-W., and Granick, S., Tribology Transactions 35, 405 (1992).Google Scholar
12. Carson, G. A., Ph.D. thesis, U. Illinois, 1992.Google Scholar
13. Granick, S., private communication.Google Scholar
14. Thompson, P. A., Grest, G. S., and Robbins, M. O., Phys. Rev. Lett. 68, 3448 (1992).Google Scholar
15. Thompson, P. A., Robbins, M. O., and Grest, G. S., Israel J. of Chem. 35, 93 (1995).Google Scholar
16. Gee, M. L., McGuiggan, P. M., Israelachvili, J. N., and Homola, A. M., J. Chem. Phys. 93, 1895 (1990).Google Scholar
17. Granick, S., Demirel, A. L., Cai, L. L., and Peanasky, J., Israel J. of Chem. 35, 75 (1995).Google Scholar
18. Abraham, F. F., J. Chem. Phys. 68, 3713 (1978).Google Scholar
19. Toxvaerd, S., J. Chem. Phys. 74, 1998 (1981).Google Scholar
20. Schöen, M., Cushman, J. H., Diestier, D., and Rhykerd, C. L., J. Chem. Phys. 88, 1394 (1988).Google Scholar
21. Padilla, P. and Toxvaerd, S., J. Chem. Phys. 101, 1490 (1994).Google Scholar
22. Manias, E., Hadziioannou, G., Bitsanis, I., and ten Brinke, G., Europhys. Lett. 24, 99 (1993).Google Scholar
23. Mundy, C., Siepmann, J., and Klein, M. L., J. Chem. Phys. 102, 3375 (1995).Google Scholar
24. Mondello, M. and Grest, G. S., J. Chem. Phys. 103, 7156 (1995);Google Scholar
Mondello, M., Grest, G. S., Garcia, A. R., and Silbernagel, B. G., J. Chem. Phys. 105, 5208 (1996).Google Scholar
25. Cui, S. T., Cummings, P. T., and Cochran, H. D., J. Chem. Phys. 104, 255 (1996);Google Scholar
Cui, S. T., Gupta, S. A., Cummings, P. T., and Cochran, H. D., J. Chem. Phys. 105, 1214 (1996).Google Scholar
26. Siepmann, J. I., Karaborni, S., and Smit, B., Nature 365, 330 (1993).Google Scholar
27. Jorgensen, W. L., Madura, J. D., and Swenson, C., J. Am. Chem. Soc. 106, 6638 (1984).Google Scholar
28. Allen, M. and Tildesley, D., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
29. Tuckerman, M., Berne, B., and Martyna, G., J. Chem. Phys. 97, 1990 (1992).Google Scholar
30. Grest, G. S. and Kremer, K., Phys. Rev. A33, 3628 (1986).Google Scholar
31. van Gunsteren, W. F. and Berendsen, H., Mol. Phys. 45, 637 (1982).Google Scholar
32. Stevens, M. S. et al., submitted to J. Chem. Phys (1996).Google Scholar
33. Kessel, C. and Granick, S., Langmuir 7, 532 (1991).Google Scholar
34. Balasubramanian, S., Klein, M. L., and Siepmann, J. L., J. Phys. Chem. 100, 11960 (1996).Google Scholar
35. Frink, L. and van Swol, F., preprint (1996).Google Scholar
36. Siepmann, J. I., Mundy, C., and Klein, M. L., preprint (1996).Google Scholar
37. Manias, E., Bitsanis, I., Hadziioannou, G., and ten Brinke, G., Europhys. Lett. 33, 371 (1996).Google Scholar