Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:16:24.124Z Has data issue: false hasContentIssue false

Simulations of Low-Energy Ion/Surface Interaction Effects During Epitaxial Film Growth.

Published online by Cambridge University Press:  16 February 2011

Makoto Kitabatake
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Moriguchi, Osaka 570, Japan.
J. E. Greene
Affiliation:
Department of Materials Science and The Coordinated Science Laboratory, University of Illinois, 1101 W. Springfield, Urbana, IL 61801, USA.
Get access

Abstract

Molecular dynamics simulations were used to follow low-energy ion/surface interactions including kinetic energy redistribution in the lattice as a function of time, projectile and lattice atom trajectories, and the nature, number, and depth of residual defects. The simulations were carried out using the Tersoff many-body potential for Si. Irradiation events were initiated with 10 and 50 eV Si atoms incident normal to the Si(001)2×l surface at an array of points in the primitive surface unit cell. Ion-induced epitaxial growth was observed due to both Si projectiles and Si lattice atoms coming to rest at epitaxial positions through direct deposition as well as site exchange occurring via diffusional and collisional processes. 36 simulations of 10 eV (50 eV) Si bombardment resulted in an average stopping position of 0.5 Å (1.6 Å) below the surface, 10 (13) epitaxial events, 7 (24) exchange events between the projectile and a lattice atom, and the formation of 15 (63) interstitials and 0 (36) vacancies. The interstitials preferentially diffuse toward the surface and are annealed out over times corresponding to monolayer deposition at typical Si MBE growth temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, the following review article and references therein: Greene, J.E., Barnett, S.A., Sundgren, J.-E., and Rockett, A., in Ion-Beam Assisted Film Growth, edited by T., Itoh (Elsevier, Amsterdam, 1988), Chap 5.Google Scholar
2. Netterfield, R.P., Sainty, W.G., Martin, P.J., and Sie, S.H., Appl.Opt. 24,2267 (1985).Google Scholar
3. Nuller, K.-H., Appl.Phys. A40, 209 (1986).Google Scholar
4. Huanb, T.C., Lim, G., Parmiagiani, F., and Kay, E., J.Vac.Sci.Technol. A3,2161 (1985).Google Scholar
5. Yu, L.S., Harper, J.M.E., Cuomo, J.J.,and Smith, D.A.,J.Vac.Sci.Technol. A4,443 (1986).Google Scholar
6. Narusawa, T, Shimizu, S., and Komiya, S, J.Vac.Sci.Technol. 16, 366 (1979).Google Scholar
7. Thomas, G.E., Beckers, L.J., Vrakking, J.J.,and deKoning, B.R., J.Crystal Growth 56, 257 (1982).Google Scholar
8. Zalm, P.C. and Beckers, L.J., Appl. Phys. Lett. 41, 167 (1982).Google Scholar
9. Hasan, M.-A., Knall, J., Barnett, S.A., Sundgren, J.-E., Markert, L.C., Rockett, A., and Greene, J.E., J.Appl.Phys. 65, 172 (1989).Google Scholar
10. Ni, W.-X., Knall, J., Hasan, M.-A., Hansson, G.V., Sundgren, J.-E., Barnett, S.A., and Greene, J.E., Phys. Rev. B40, 10449 (1989).Google Scholar
11. Kitabatake, M. and Wasa, K., J. Vac. Sci. Technol. A6, 1793 (1988).Google Scholar
12. Romano, L.T., Robertson, I.M., Greene, J.E., andSundgren, J.-E., Phys. Rev. B36, 7523 (1987).Google Scholar
13. Shah, S.I., Greene, J.E., Abels, L.L., and Raccah, P., J. Crystal Growth 91, 71 (1988).Google Scholar
14. Hultman, L., Barnett, S.A., Sundgren, J.-E., and Greene, J.E., J.Crystal Growth 92, 639 (1988).Google Scholar
15. Hasan, M.-A., Knall, J., Bamett, S.A., Rockett, A., Sundgren, J.-E., and Greene, J.E., J.Vac. Sci. Technol. A5, 1883 (1987).Google Scholar
16. Powell, R.C., Tomasch, G.A., Kim, Y.-W., Thomton, J.A., and Greene, J.E., Mat. Res. Soc. Symp.Proc. Vol.162. 525 (1990).Google Scholar
17. Tsao, J.Y., Chason, E., Hom, K.M., Brice, D.K., and Picraux, S.T., Nucl.Instrum. Methods B39, 72 (1989).Google Scholar
18. Ohmi, T., Ichikawa, T., Shibata, T., Matsudo, K., and Iwabuchi, H., Appl. Phys. Lett. 53,45 (1988).Google Scholar
19. Noel, J.-P., Hirashita, N., Markert, L.C., Kim, Y.-W., Greene, J.E., Knall, J., Ni, W.-X., Hasan, M.A., and Sundgren, J.-E., J.Appl.Phys. 65, 1189 (1989).Google Scholar
20. Noel, J.-P., Greene, J.E., Rowell, N.L., Kechang, S., and Houghton, D.C., Appl. Phys. Lett. 55,1525 (1989).Google Scholar
21. Greene, J.E., Barnett, S.A., Bajor, G., and Rockett, A., Appl.Surf.Sci. 22/23, 520 (1985).Google Scholar
22. Muller, K.-H., Phys.Rev. B35, 7906 (1987).Google Scholar
23. Kitabatake, M., Fons, P., and Greene, J.E., J.VAc.Sci.Technol. A8, 3726 (1990).Google Scholar
24. Kitabatake, M., Fons, P., and Greene, J.E., J. Crystal Growth (1991) in press.Google Scholar
25. Kitabatake, M., Fons, P., and Greene, J.E., J.VAc.Sci.Technol. A9, 91 (1991).Google Scholar
26. Tersoff, J., Phys. Rev. B38, 9902 (1988).Google Scholar
27. Schofield, P., Comp.Phys.Comm. 5, 17 (1973).Google Scholar
28. Beeler, J.R., Radiation Effects Computer Experiments: Defect in Solids (North-Holland, Amsterdam, 1983), p. 30.Google Scholar
29. Tromp, R.M., Hamers, R.J., and Demuth, J.E., Phys. Rev. Lett. 55, 1303 (1985).Google Scholar
30. Car, R., Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys.Rev.Lett. 52, 1814 (1984).Google Scholar
31. Car, R., Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys.Rev.Lett. 54, 360 (1985).Google Scholar
32. Baraff, G.A. and Schluter, M., Phys. Rev. 30, 3460 (1984).Google Scholar
33. Bar-Yam, Y. and Joannopoulos, J.D., Phys. Rev. B30, 1844 (1984).Google Scholar